Cargando…

Credit correlation : life after copulas /

The recent growth of credit derivatives has been explosive. The global credit derivatives market grew in notional value from $1 trillion to $20 trillion from 2000 to 2006. However, understanding the true nature of these instruments still poses both theoretical and practical challenges. For a long ti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Lipton, Alexander, Rennie, Andrew, 1968-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, ©2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn646768585
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 080414s2008 njua ob 000 0 eng d
010 |a  2008273169 
040 |a E7B  |b eng  |e pn  |c E7B  |d CEF  |d OCLCQ  |d N$T  |d MERUC  |d UBY  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d YDXCP  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d U3W  |d STF  |d VNS  |d WRM  |d VTS  |d NRAMU  |d VT2  |d OCLCQ  |d M8D  |d UKAHL  |d HS0  |d UKCRE  |d OCLCO  |d OCLCQ 
019 |a 262537079  |a 441823932  |a 505142846  |a 815749839  |a 961537173  |a 962678641  |a 968303673  |a 988484438  |a 991913806  |a 1037732761  |a 1038591625  |a 1045459489  |a 1055377319  |a 1081255986  |a 1153549772 
020 |a 9789812709509  |q (electronic bk.) 
020 |a 9812709509  |q (electronic bk.) 
020 |a 1281918822 
020 |a 9781281918826 
020 |z 9789812709493  |q (hbk.) 
020 |z 9812709495  |q (Cloth) 
029 1 |a AU@  |b 000051358979 
029 1 |a DEBBG  |b BV043152531 
029 1 |a DEBSZ  |b 422095583 
029 1 |a NZ1  |b 13518426 
035 |a (OCoLC)646768585  |z (OCoLC)262537079  |z (OCoLC)441823932  |z (OCoLC)505142846  |z (OCoLC)815749839  |z (OCoLC)961537173  |z (OCoLC)962678641  |z (OCoLC)968303673  |z (OCoLC)988484438  |z (OCoLC)991913806  |z (OCoLC)1037732761  |z (OCoLC)1038591625  |z (OCoLC)1045459489  |z (OCoLC)1055377319  |z (OCoLC)1081255986  |z (OCoLC)1153549772 
050 4 |a HG6024.A3  |b C735 2008eb 
072 7 |a BUS  |x 036000  |2 bisacsh 
072 7 |a KFFL  |2 bicssc 
082 0 4 |a 332.64/57  |2 22 
049 |a UAMI 
245 0 0 |a Credit correlation :  |b life after copulas /  |c editors, Alexander Lipton, Andrew Rennie. 
246 3 0 |a Life after copulas 
260 |a New Jersey :  |b World Scientific,  |c ©2008. 
300 |a 1 online resource (vii, 169 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
520 |a The recent growth of credit derivatives has been explosive. The global credit derivatives market grew in notional value from $1 trillion to $20 trillion from 2000 to 2006. However, understanding the true nature of these instruments still poses both theoretical and practical challenges. For a long time now, the framework of Gaussian copulas parameterized by correlation, and more recently base correlation, has provided an adequate, if unintuitive, description of the market. However, the increased liquidity in credit indices and index tranches, as well as the proliferation of exotic instruments such as forward starting tranches, options on tranches, leveraged super senior tranches, and the like, have made it imperative to come up with models that describe market reality better. This book, originally and concurrently published in the International Journal of Theoretical and Applied Finance, Vol. 10, No. 4, 2007, agrees that base correlation has outlived its usefulness; opinions of how to replace it, however, are divided. Both the top-down and bottom-up approaches for describing the dynamics of credit baskets are presented, and pro and contra arguments are put forward. Readers will decide which direction is the most promising one at the moment. However, it is hoped that, in the near future, models that transcend base correlation will be proposed and accepted by the market. 
505 0 |a Introduction; Levy Simple Structural Models M. Baxter; 1. Introduction; 2. Levy Processes; 3. Credit Models for Single Names; 3.1. Example: Term structure of a single credit; 3.2. Extensions; 4. Portfolio Credit Models; 5. Calibration and Model Comparison; 6. Parameter Risks and Hedging; 6.1. Case study: Auto crisis May 2005; 7. Implementation and Other Products; 7.1. Calculating the distribution function; 7.2. Performing the optimization; 7.3. Other products; 8. Summary and Conclusions; References 
505 8 |a Cluster-Based Extension of the Generalized Poisson Loss Dynamics and Consistency with Single Names D. Brigo, A. Pallavicini and R. Torresetti1. Introduction; 2. Modeling Framework and the CPS Approach; 3. Avoiding Repeated Defaults; 3.1. Default-counting adjustment: GPL model (Strategy 0); 3.2. Single-name adjusted approach (Strategy 1); 3.3. GPCL model: Cluster-adjusted approach (Strategy 2); 3.4. Comparing models in a simplified scenario; 4. The GPCL Model Calibration; 4.1. Calibration results; 5. Extensions: Spread and Recovery Dynamics; 6. Conclusions; Acknowledgements; References 
505 8 |a Appendix A. Market QuotesAppendix B. Calibration Inputs and Outputs; Stochastic Intensity Modeling for Structured Credit Exotics A. Chapovsky, A. Rennie and P. Tavares; 1. Introduction; 2. Model Setup; 2.1. Motivation; 2.2. Single credit dynamics; 2.3. Multiple credit dynamics; 2.4. Factorization of intensity dynamics; 2.5. Note on credit correlation; 3. Model Parametrization and Calibration; 3.1. Jump-only process; 3.2. Jump-CIR process; 3.3. Non-linear jump-diffusion process; 3.4. Idiosyncratic intensity dynamics; 4. Application to Structured Credit Exotics 
505 8 |a 4.1. Approximating model dynamics4.2. Pricing of derivatives; 4.2.1. Vanilla tranches; 4.2.2. European option on tranche; 4.2.3. Leveraged tranche; 4.2.4. Tranche with counterparty risk; 5. Conclusions; Acknowledgments; References; Large Portfolio Credit Risk Modeling M. H. A. Davis and J. C. Esparragoza-Rodriguez; 1. Introduction; 2. Model Description; 2.1. Formal definition of the model; 3. Fluid and Diffusion Limits; 4. Convergence Results for the Rating Distribution Process; 4.1. The fiuid limit; 4.2. The diffusion limit 
505 8 |a 4.3. The infinitesimal generator of the single-obligor process and the probability of default5. Computational Aspects: Quadratures; 5.1. CDO pricing; 5.2. Changes of measure, the Poisson space and Quadrature formulas; 5.2.1. The canonical space of a Poisson process; 5.2.2. Gaussian quadratures; 5.3. Some comparisons; 6. Calibration; 6.1. A 3-state environment process; 6.1.1. Implementation; 7. Conclusions; References; Empirical Copulas for CDO Tranche Pricing Using Relative Entropy M. A. H. Dempster, E. A. Medova and S. W. Yang; 1. Introduction 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Credit derivatives. 
650 6 |a Instruments dérivés de crédit. 
650 7 |a BUSINESS & ECONOMICS  |x Investments & Securities  |x General.  |2 bisacsh 
650 7 |a Credit derivatives.  |2 fast  |0 (OCoLC)fst00882587 
700 1 |a Lipton, Alexander. 
700 1 |a Rennie, Andrew,  |d 1968- 
730 0 |a International journal of theoretical and applied finance. 
776 0 8 |i Print version:  |t Credit correlation.  |d New Jersey : World Scientific, ©2008  |w (DLC) 2008273169 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236047  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684206 
938 |a ebrary  |b EBRY  |n ebr10255687 
938 |a EBSCOhost  |b EBSC  |n 236047 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 191882 
938 |a YBP Library Services  |b YANK  |n 2891920 
994 |a 92  |b IZTAP