|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn646768373 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
010823s2001 nju ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d OCLCQ
|d HVC
|d N$T
|d YDXCP
|d OCLCQ
|d ZCU
|d OCLCO
|d IDEBK
|d OCLCF
|d OCLCQ
|d SLY
|d OCLCQ
|d STF
|d OCLCQ
|d LOA
|d AZK
|d AGLDB
|d COCUF
|d MOR
|d CCO
|d PIFAG
|d VGM
|d OCLCQ
|d WRM
|d VTS
|d NRAMU
|d VT2
|d OCLCQ
|d WYU
|d LEAUB
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 52854666
|a 505147571
|a 764499667
|a 880303047
|a 961533369
|a 962630609
|
020 |
|
|
|a 9812386580
|q (electronic bk.)
|
020 |
|
|
|a 9789812386588
|q (electronic bk.)
|
020 |
|
|
|z 9789810246853
|
020 |
|
|
|z 9810246854
|
020 |
|
|
|z 9810246862
|q (pbk.)
|
029 |
1 |
|
|a AU@
|b 000049162866
|
029 |
1 |
|
|a AU@
|b 000051377881
|
029 |
1 |
|
|a DEBBG
|b BV043152756
|
029 |
1 |
|
|a DEBSZ
|b 422411167
|
029 |
1 |
|
|a NZ1
|b 13857996
|
035 |
|
|
|a (OCoLC)646768373
|z (OCoLC)52854666
|z (OCoLC)505147571
|z (OCoLC)764499667
|z (OCoLC)880303047
|z (OCoLC)961533369
|z (OCoLC)962630609
|
050 |
|
4 |
|a QA613.618
|b .Z43 2001eb
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 514/.72
|2 21
|
084 |
|
|
|a O177. 3
|2 clc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Zhang, Weiping,
|d 1964-
|
245 |
1 |
0 |
|a Lectures on Chern-Weil theory and Witten deformations /
|c Weiping Zhang.
|
260 |
|
|
|a River Edge, N.J. :
|b World Scientific,
|c ©2001.
|
300 |
|
|
|a 1 online resource (xi, 117 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Nankai tracts in mathematics ;
|v 4
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References.
|
520 |
|
|
|a This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Chern classes.
|
650 |
|
0 |
|a Index theorems.
|
650 |
|
0 |
|a Complexes.
|
650 |
|
6 |
|a Classes de Chern.
|
650 |
|
6 |
|a Théorèmes d'indices.
|
650 |
|
6 |
|a Complexes (Mathématiques)
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
0 |
7 |
|a Index theorems.
|2 cct
|
650 |
0 |
7 |
|a Complexes.
|2 cct
|
650 |
0 |
7 |
|a Chern classes.
|2 cct
|
650 |
|
7 |
|a Chern classes
|2 fast
|
650 |
|
7 |
|a Complexes
|2 fast
|
650 |
|
7 |
|a Index theorems
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Zhang, Weiping.
|t Lectures on Chern-Weil theory and Witten deformations.
|d River Edge, N.J. : World Scientific, ©2001
|w (DLC) 2001046629
|
830 |
|
0 |
|a Nankai tracts in mathematics ;
|v v. 4.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91479
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH21189854
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10255555
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 91479
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis26426428
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2407635
|
994 |
|
|
|a 92
|b IZTAP
|