Cargando…

Synthetic geometry of manifolds /

"This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kock, Anders
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, ©2010.
Colección:Cambridge tracts in mathematics ; 180.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn646069159
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mnu---unuuu
008 100706s2010 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OSU  |d YDXCP  |d OCLCQ  |d UKMGB  |d OCLCQ  |d OCLCF  |d AUD  |d OCLCQ  |d HEBIS  |d OCLCO  |d OCLCA  |d UAB  |d OCLCQ  |d INT  |d OCLCQ  |d AU@  |d OCLCO  |d OCLCQ  |d K6U  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 015506477  |2 Uk 
019 |a 776972641 
020 |a 9780511691096  |q (electronic bk.) 
020 |a 0511691092  |q (electronic bk.) 
020 |a 9780511692215  |q (ebook) 
020 |a 0511692218  |q (ebook) 
020 |a 9780511691690  |q (ebook) 
020 |a 0511691696  |q (ebook) 
020 |z 9780521116732  |q (hardback) 
020 |z 0521116732  |q (hardback) 
035 |a (OCoLC)646069159  |z (OCoLC)776972641 
050 4 |a QA641  |b .K735 2010eb 
072 7 |a MAT  |x 012030  |2 bisacsh 
082 0 4 |a 516.3/62  |2 22 
049 |a UAMI 
100 1 |a Kock, Anders. 
245 1 0 |a Synthetic geometry of manifolds /  |c Anders Kock. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c ©2010. 
300 |a 1 online resource (xiii, 302 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge tracts in mathematics ;  |v 180 
520 |a "This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basic constructions in local differential geometry and, in fact, form an inviting gateway to differential geometry, and also to some differential-geometric notions that exist in algebraic geometry. The presentation conveys the real strength of this approach to differential geometry. Concepts are clarified, proofs are streamlined, and the focus on infinitesimal spaces motivates the discussion well. Some of the specific differential-geometric theories dealt with are connection theory (notably affine connections), geometric distributions, differential forms, jet bundles, differentiable groupoids, differential operators, Riemannian metrics, and harmonic maps. Ideal for graduate students and researchers wishing to familiarize themselves with the field"--Provided by publisher. 
520 |a "This book deals with a certain aspect of the theory of smoothmanifolds, namely (for each k) the kth neigbourhood of the diagonal. A part of the theory presented here also applies in algebraic geometry (smooth schemes). The neighbourhoods of the diagonal are classical mathematical objects. In the context of algebraic geometry, they were introduced by the Grothendieck school in the early 1960s; the Grothendieck ideas were imported into the context of smooth manifolds by Malgrange, Kumpera and Spencer, and others. Kumpera and Spencer call them "prolongation spaces of order k". The study of these spaces has previously been forced to be rather technical, because the prolongation spaces are not themselves manifolds, but live in a wider category of "spaces", which has to be described. For the case of algebraic geometry, one passes from the category of varieties to the wider category of schemes; for the smooth case, Malgrange, Kumpera and Spencer, and others described a category of "generalized differentiablemanifolds with nilpotent elements" (Kumpera and Spencer, 1973, p. 54)"--Provided by publisher. 
504 |a Includes bibliographical references (pages 293-297) and index. 
505 0 |a Calculus and linear algebra -- Geometry of the neighbour relation -- Combinatorial differential forms -- The tangent bundle -- Groupoids -- Lie theory; non-abelian covariant derivative -- Jets and differential operators -- Metric notions. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Geometry, Differential. 
650 0 |a Manifolds (Mathematics) 
650 6 |a Géométrie différentielle. 
650 6 |a Variétés (Mathématiques) 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a Geometry, Differential  |2 fast 
650 7 |a Manifolds (Mathematics)  |2 fast 
650 7 |a Differentialgeometrie  |2 gnd 
650 7 |a Mannigfaltigkeit  |2 gnd 
650 7 |a Differenzierbare Mannigfaltigkeit  |2 gnd 
650 7 |a Synthetische Differentialgeometrie  |2 gnd 
776 0 8 |i Print version:  |a Kock, Anders.  |t Synthetic geometry of manifolds.  |d New York : Cambridge University Press, ©2010  |z 9780521116732  |w (DLC) 2009038164  |w (OCoLC)401146707 
830 0 |a Cambridge tracts in mathematics ;  |v 180. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=318404  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13429235 
938 |a EBSCOhost  |b EBSC  |n 318404 
938 |a YBP Library Services  |b YANK  |n 3335955 
938 |a YBP Library Services  |b YANK  |n 3335167 
938 |a YBP Library Services  |b YANK  |n 3371034 
938 |a YBP Library Services  |b YANK  |n 3582443 
994 |a 92  |b IZTAP