Cargando…

Networks in cell biology /

"The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key lead...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Buchanan, M. (Mark), 1961-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2010.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Half-title
  • Title
  • Copyright
  • Contents
  • Contributors
  • Introduction
  • 1 Network views of the cell
  • 1.1 The network hypothesis
  • 1.2 The central dogma and gene regulatory networks
  • 1.3 Proteinprotein interaction networks
  • 1.4 Metabolic networks
  • 1.5 Signaling networks
  • 1.6 Networked networks and cell functionality
  • 1.7 Concluding remarks
  • 2 Transcriptional regulatory networks
  • 2.1 Introduction
  • 2.2 Transcriptional regulation in prokaryotes and eukaryotes
  • 2.3 Structure of transcriptional regulatory networks
  • 2.3.1 Global level
  • 2.3.2 Modular level
  • 2.3.3 Local level
  • 2.4 Evolution of transcriptional regulatory networks
  • 2.4.1 Evolution of transcription factors and cis-regulatory elements
  • 2.4.2 Transcriptional network evolution within an organism
  • 2.4.3 Transcriptional network evolution across organisms
  • 2.5 Dynamics of transcriptional regulatory networks
  • 2.5.1 Temporal dynamics of transcriptional networks
  • 2.5.2 Dynamics of individual regulatory interactions
  • 2.6 Conclusions
  • Acknowledgments
  • 3 Transcription factors and gene regulatory networks
  • 3.1 Introduction
  • 3.2 Promoters' complexity/eukaryotic gene promoters
  • 3.2.1 Human promoters
  • 3.3 Transcription factors
  • 3.3.1 bZIP transcription factors
  • 3.3.2 Helix-turn-helix domains
  • 3.3.3 Zinc-coordinating domains
  • 3.4 Bioinformatics of regulatory networks
  • 3.4.1 Transcription factors identification
  • 3.4.2 Motif finding
  • 4 Experimental methods for protein interaction identification
  • 4.1 Introduction
  • 4.1.1 Complex versus binary interactions
  • 4.1.2 The biological relevance of detected proteinprotein interactions
  • 4.1.3 Proteinprotein interactions are incompletely studied
  • 4.2 Protein complementation techniques
  • 4.2.1 The yeast two-hybrid system
  • 4.2.2 Other fragment complementation techniques
  • 4.3 Affinity purification methods
  • 4.3.1 GST pulldown
  • 4.3.2 Co-immunoprecipitation
  • 4.4 Protein complex purification and mass spectrometry
  • 4.4.1 Purification of proteins using affinity tags
  • 4.4.2 Tandem affinity tagging
  • 4.4.3 Genetics and cloning of affinity tagged proteins
  • 4.4.4 Isolation of protein complexes
  • 4.4.5 Proteomics by mass spectrometry
  • 4.4.6 Identifying interacting proteins using mass spectrometry
  • 4.4.7 Quantitative proteomics
  • 4.5 Protein and peptide chips
  • 4.6 Other methods for interaction detection and functional analysis
  • Genetic interactions
  • Functional interactions such as post-translational modifications
  • 4.7 Quality of large-scale interaction data
  • 4.8 Comparison of methods
  • 4.8.1 Y2H vs. co-AP/MS
  • 4.8.2 coAP/MS vs. protein chips
  • 4.9 Conclusions
  • 5 Modeling protein interaction networks
  • 5.1 Introduction
  • 5.2 Scaling laws and network topology
  • 5.2.1 Evolution and duplication of proteins
  • 5.2.2 Protein binding physical models
  • 5.3 Predicting protein interactions
  • 5.3.1 Genome analysis and expression
  • 5.4 Towards models at an atomic level of resolution
  • 5.4.1 Proteinprotein docking
  • 5.4.2 Modeling by homology
  • 5.5 Concluding remarks
  • 6 Dynamics and evolution of metabolic networks
  • 6.1 Introduction
  • 6.2 Cellular metabolism and its regulation
  • 6.3 Metabolism across disciplines
  • Origin and ev.