Cargando…

Groups of prime power order. Volume 2 /

Annotation This is the second of three volumes on finite p-group theory, written by two prominent authors in the area.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berkovich, Yakov
Otros Autores: Janko, Zvonimir
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; New York : W. de Gruyter, ©2008.
Colección:De Gruyter expositions in mathematics ; 47.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn632751434
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 081001s2008 gw ob 001 0 eng d
040 |a LYU  |b eng  |e pn  |c LYU  |d E7B  |d OCLCQ  |d MEAUC  |d N$T  |d YDXCP  |d IDEBK  |d OCLCQ  |d FVL  |d OCLCQ  |d OCLCO  |d OCLCF  |d DKDLA  |d OCLCQ  |d AZK  |d COCUF  |d UIU  |d MOR  |d PIFAG  |d OCLCQ  |d U3W  |d D6H  |d STF  |d WRM  |d VTS  |d NRAMU  |d INT  |d OCLCQ  |d TKN  |d OCLCQ  |d HS0  |d K6U  |d VLY  |d QGK  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 402467201  |a 503441399  |a 646796541  |a 722705427  |a 728053293  |a 961538410  |a 962633012  |a 994504677  |a 1162091061  |a 1241754453  |a 1290050425  |a 1300614672 
020 |a 9783110208238  |q (electronic bk.) 
020 |a 3110208237  |q (electronic bk.) 
020 |z 3110204193 
020 |z 9783110204193 
020 |a 1281993484 
020 |a 9781281993489 
020 |a 9786611993481 
020 |a 6611993487 
020 |a 3119162396 
020 |a 9783119162395 
024 7 |a 10.1515/9783110208238  |2 doi 
029 1 |a AU@  |b 000050962890 
029 1 |a AU@  |b 000051449518 
029 1 |a DEBBG  |b BV043122966 
029 1 |a DEBSZ  |b 421992484 
029 1 |a NZ1  |b 13334651 
035 |a (OCoLC)632751434  |z (OCoLC)402467201  |z (OCoLC)503441399  |z (OCoLC)646796541  |z (OCoLC)722705427  |z (OCoLC)728053293  |z (OCoLC)961538410  |z (OCoLC)962633012  |z (OCoLC)994504677  |z (OCoLC)1162091061  |z (OCoLC)1241754453  |z (OCoLC)1290050425  |z (OCoLC)1300614672 
050 4 |a QA177  |b .B472 2008eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512.2  |2 22 
049 |a UAMI 
100 1 |a Berkovich, Yakov. 
245 1 0 |a Groups of prime power order.  |n Volume 2 /  |c by Yakov Berkovich and Zvonimir Janko. 
260 |a Berlin ;  |a New York :  |b W. de Gruyter,  |c ©2008. 
300 |a 1 online resource (xv, 596 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter expositions in mathematics,  |x 0938-6572 ;  |v 47 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
520 8 |a Annotation This is the second of three volumes on finite p-group theory, written by two prominent authors in the area. 
505 0 |a Frontmatter; Contents; List of definitions and notations; Preface; 46. Degrees of irreducible characters of Suzuki p-groups; 47. On the number of metacyclic epimorphic images of finite p-groups; 48. On 2-groups with small centralizer of an involution, I; 49. On 2-groups with small centralizer of an involution, II; 50. Janko's theorem on 2-groups without normal elementary abelian subgroups of order 8; 51. 2-groups with self centralizing subgroup isomorphic to E8; 52. 2-groups with 2-subgroup of small order; 53. 2-groups G with c2(G) = 4; 54. 2-groups G with cn(G) = 4, n > 2 
505 8 |a 55. 2-groups G with small subgroup (x ? G -- o(x) = 2"")56. Theorem of Ward on quaternion-free 2-groups; 57. Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic and have exponent 4; 58. Non-Dedekindian p-groups all of whose nonnormal subgroups of the same order are conjugate; 59. p-groups with few nonnormal subgroups; 60. The structure of the Burnside group of order 212; 61. Groups of exponent 4 generated by three involutions; 62. Groups with large normal closures of nonnormal cyclic subgroups 
505 8 |a 63. Groups all of whose cyclic subgroups of composite orders are normal64. p-groups generated by elements of given order; 65. A2-groups; 66. A new proof of Blackburn's theorem on minimal nonmetacyclic 2-groups; 67. Determination of U2-groups; 68. Characterization of groups of prime exponent; 69. Elementary proofs of some Blackburn's theorems; 70. Non-2-generator p-groups all of whose maximal subgroups are 2-generator; 71. Determination of A2-groups; 72. An-groups, n > 2; 73. Classification of modular p-groups; 74. p-groups with a cyclic subgroup of index p2 
505 8 |a 75. Elements of order = 4 in p-groups76. p-groups with few A1-subgroups; 77. 2-groups with a self-centralizing abelian subgroup of type (4, 2); 78. Minimal nonmodular p-groups; 79. Nonmodular quaternion-free 2-groups; 80. Minimal non-quaternion-free 2-groups; 81. Maximal abelian subgroups in 2-groups; 82. A classification of 2-groups with exactly three involutions; 83. p-groups G with O2(G) or O2*(G) extraspecial; 84. 2-groups whose nonmetacyclic subgroups are generated by involutions; 85. 2-groups with a nonabelian Frattini subgroup of order 16 
505 8 |a 86. p-groups G with metacyclic O2*(G)87. 2-groups with exactly one nonmetacyclic maximal subgroup; 88. Hall chains in normal subgroups of p-groups; 89. 2-groups with exactly six cyclic subgroups of order 4; 90. Nonabelian 2-groups all of whose minimal nonabelian subgroups are of order 8; 91. Maximal abelian subgroups of p-groups; 92. On minimal nonabelian subgroups of p-groups; Appendix 16. Some central products; Appendix 17. Alternate proofs of characterization theorems of Miller and Janko on 2-groups, and some related results; Appendix 18. Replacement theorems 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Finite groups. 
650 0 |a Group theory. 
650 6 |a Groupes finis. 
650 6 |a Théorie des groupes. 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Finite groups  |2 fast 
650 7 |a Group theory  |2 fast 
700 1 |a Janko, Zvonimir. 
776 0 8 |i Print version:  |a Berkovich, I͡A. G., 1938-  |t Groups of prime power order. Volume 2.  |d Berlin ; New York : W. de Gruyter, ©2008  |z 9783110204186 
830 0 |a De Gruyter expositions in mathematics ;  |v 47.  |x 0938-6572 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=274368  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10275912 
938 |a EBSCOhost  |b EBSC  |n 274368 
938 |a YBP Library Services  |b YANK  |n 2997477 
938 |a YBP Library Services  |b YANK  |n 8872492 
994 |a 92  |b IZTAP