Cargando…

Norm derivatives and characterizations of inner product spaces /

The book provides a comprehensive overview of the characterizations of real normed spaces as inner product spaces based on norm derivatives and generalizations of the most basic geometrical properties of triangles in normed spaces. Since the appearance of Jordan-von Neumann's classical theorem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Alsina, Claudi
Otros Autores: Sikorska, Justyna, Tomás, M. Santos (Maria Santos)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, ©2010.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn630153547
003 OCoLC
005 20231017213018.0
006 m o d
007 cr muu|||uu|||
008 100524s2010 njua ob 001 0 eng d
040 |a LLB  |b eng  |e pn  |c LLB  |d OCLCQ  |d N$T  |d E7B  |d YDXCP  |d OSU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d OCLCQ  |d VTS  |d ICG  |d INT  |d OCLCQ  |d STF  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 670430145  |a 694144276 
020 |a 9789814287272  |q (electronic bk.) 
020 |a 981428727X  |q (electronic bk.) 
020 |z 9789814287265 
020 |z 9814287261 
029 1 |a DEBBG  |b BV043062344 
029 1 |a DEBBG  |b BV044179604 
029 1 |a DEBSZ  |b 372737633 
029 1 |a DEBSZ  |b 407526609 
029 1 |a DEBSZ  |b 421675209 
029 1 |a DEBSZ  |b 445555513 
029 1 |a NZ1  |b 13868764 
035 |a (OCoLC)630153547  |z (OCoLC)670430145  |z (OCoLC)694144276 
050 4 |a QA322.4  |b A57 2010eb 
072 7 |a MAT  |x 031000  |2 bisacsh 
082 0 4 |a 515.733  |2 22 
049 |a UAMI 
100 1 |a Alsina, Claudi. 
245 1 0 |a Norm derivatives and characterizations of inner product spaces /  |c Claudi Alsina, Justyna Sikorska, M Santos Tomás. 
260 |a New Jersey :  |b World Scientific,  |c ©2010. 
300 |a 1 online resource (x, 188 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The book provides a comprehensive overview of the characterizations of real normed spaces as inner product spaces based on norm derivatives and generalizations of the most basic geometrical properties of triangles in normed spaces. Since the appearance of Jordan-von Neumann's classical theorem (The Parallelogram Law) in 1935, the field of characterizations of inner product spaces has received a significant amount of attention in various literature texts. Moreover, the techniques arising in the theory of functional equations have shown to be extremely useful in solving key problems in the characterizations of Banach spaces as Hilbert spaces. This book presents, in a clear and detailed style, state-of-the-art methods of characterizing inner product spaces by means of norm derivatives. It brings together results that have been scattered in various publications over the last two decades and includes more new material and techniques for solving functional equations in normed spaces. Thus the book can serve as an advanced undergraduate or graduate text as well as a resource book for researchers working in geometry of Banach (Hilbert) spaces or in the theory of functional equations (and their applications). 
504 |a Includes bibliographical references (pages 179-185) and index. 
505 0 |a Introduction. Historical notes -- Normed linear spaces -- Strictly convex normed linear spaces -- Inner product spaces --Orthogonalities in normed linear spaces -- Norm derivatives. Norm derivatives : definition and basic properties -- Orthogonality relations based on norm derivatives -- p'[symbol]-orthogonal transformations -- On the equivalence of two norm derivatives -- Norm derivatives and projections in normed linear spaces -- Norm derivatives and Lagrange's identity in normed linear spaces -- On some extensions of the norm derivatives -- p-orthogonal additivity -- Norm derivatives and heights. Definition and basic properties -- Characterizations of inner product spaces involving geometrical properties of a height in a triangle -- Height functions and classical orthogonalities -- A new orthogonality relation -- Orthocenters -- A characterization of inner product spaces involving an isosceles trapezoid property -- Functional equations of the height transform -- Perpendicular bisectors in Normed spaces. Definitions and basic properties -- A new orthogonality relation -- Relations between perpendicular bisectors and classical orthogonalities -- On the radius of the circumscribed circumference of a triangle -- Circumcenters in a triangle -- Euler line in real normed space -- Functional equation of the perpendicular bisector transform -- Bisectrices in real Normed spaces. Bisectrices in real normed spaces -- A new orthogonality relation -- Functional equation of the bisectrix transform -- Generalized bisectrices in strictly convex real normed spaces -- Incenters and generalized bisectrices -- Areas of triangles in Normed spaces. Definition of four areas of triangles -- Classical properties of the areas and characterizations of inner product spaces -- Equalities between different area functions -- The area orthogonality. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Normed linear spaces. 
650 0 |a Inner product spaces. 
650 6 |a Espaces linéaires normés. 
650 6 |a Espaces à produit scalaire. 
650 7 |a MATHEMATICS  |x Transformations.  |2 bisacsh 
650 7 |a Inner product spaces  |2 fast 
650 7 |a Normed linear spaces  |2 fast 
655 4 |a Electronic book. 
700 1 |a Sikorska, Justyna. 
700 1 |a Tomás, M. Santos  |q (Maria Santos) 
776 0 8 |i Print version:  |a Alsina, Claudi.  |t Norm derivatives and characterizations of inner product spaces.  |d Singapore : World Scientific, ©2010  |z 9789814287265  |w (OCoLC)540206466 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340640  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10422427 
938 |a EBSCOhost  |b EBSC  |n 340640 
938 |a YBP Library Services  |b YANK  |n 3511491 
994 |a 92  |b IZTAP