Feynman motives /
This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understa...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; Hackensack, N.J. :
World Scientific Pub. Co.,
©2010.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Perturbative quantum field theory and Feynman diagrams. 1.1. A calculus exercise in Feynman integrals. 1.2. From Lagrangian to effective action. 1.3. Feynman rules. 1.4. Simplifying graphs : vacuum bubbles, connected graphs. 1.5. One-particle-irreducible graphs. 1.6. The problem of renormalization. 1.7. Gamma functions, Schwinger and Feynman parameters. 1.8. Dimensional regularization and minimal subtraction
- 2. Motives and periods. 2.1. The idea of motives. 2.2. Pure motives. 2.3. Mixed motives and triangulated categories. 2.4. Motivic sheaves. 2.5. The Grothendieck ring of motives. 2.6. Tate motives. 2.7. The algebra of periods. 2.8. Mixed Tate motives and the logarithmic extensions. 2.9. Categories and Galois groups. 2.10. Motivic Galois groups
- 3. Feynman integrals and algebraic varieties. 3.1. The parametric Feynman integrals. 3.2. The graph hypersurfaces. 3.3. Landau varieties. 3.4. Integrals in affine and projective spaces. 3.5. Non-isolated singularities. 3.6. Cremona transformation and dual graphs. 3.7. Classes in the Grothendieck ring. 3.8. Motivic Feynman rules. 3.9. Characteristic classes and Feynman rules. 3.10. Deletion-contraction relation. 3.11. Feynman integrals and periods. 3.12. The mixed Tate mystery. 3.13. From graph hypersurfaces to determinant hypersurfaces. 3.14. Handling divergences. 3.15. Motivic zeta functions and motivic Feynman rules
- 4. Feynman integrals and Gelfand-Leray forms. 4.1. Oscillatory integrals. 4.2. Leray regularization of Feynman integrals
- 5. Connes-Kreimer theory in a nutshell. 5.1. The Bogolyubov recursion. 5.2. Hopf algebras and affine group schemes. 5.3. The Connes-Kreimer Hopf algebra. 5.4. Birkhoff factorization. 5.5. Factorization and Rota-Baxter algebras. 5.6. Motivic Feynman rules and Rota-Baxter structure
- 6. The Riemann-Hilbert correspondence. 6.1. From divergences to iterated integrals. 6.2. From iterated integrals to differential systems. 6.3. Flat equisingular connections and vector bundles. 6.4. The "cosmic Galois group"
- 7. The geometry of DimReg. 7.1. The motivic geometry of DimReg. 7.2. The noncommutative geometry of DimReg
- 8. Renormalization, singularities, and Hodge structures. 8.1. Projective radon transform. 8.2. The polar filtration and the Milnor fiber. 8.3. DimReg and mixed Hodge structures. 8.4. Regular and irregular singular connections
- 9. Beyond scalar theories. 9.1. Supermanifolds. 9.2. Parametric Feynman integrals and supermanifolds. 9.3. Graph supermanifolds. 9.4. Noncommutative field theories.