Cargando…

Semiclassical analysis, Witten Laplacians, and statistical mechanics /

This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniq...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Helffer, Bernard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, NJ : World Scientific, ©2002.
Colección:Series on partial differential equations and applications ; v. 1.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn614463605
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 030626s2002 nju ob 001 0 eng d
040 |a CaPaEBR  |b eng  |e pn  |c ADU  |d E7B  |d OCLCQ  |d COCUF  |d N$T  |d YDXCP  |d DKDLA  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d STF  |d OCLCQ  |d AGLDB  |d MOR  |d CCO  |d PIFBR  |d OCLCQ  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d VT2  |d OCLCQ  |d WYU  |d LEAUB  |d JBG  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 181654838  |a 277199820  |a 465656184  |a 647684273  |a 888835263  |a 961528742  |a 962596159 
020 |a 9789812776891  |q (electronic bk.) 
020 |a 9812776893  |q (electronic bk.) 
020 |a 9789812380982 
020 |a 9812380981 
020 |z 9812380981 
029 1 |a AU@  |b 000049162871 
029 1 |a AU@  |b 000051411141 
029 1 |a AU@  |b 000053251629 
029 1 |a DEBBG  |b BV043129933 
029 1 |a DEBSZ  |b 422168475 
029 1 |a GBVCP  |b 803163657 
029 1 |a NZ1  |b 12808127 
035 |a (OCoLC)614463605  |z (OCoLC)181654838  |z (OCoLC)277199820  |z (OCoLC)465656184  |z (OCoLC)647684273  |z (OCoLC)888835263  |z (OCoLC)961528742  |z (OCoLC)962596159 
050 4 |a QC174.86.C6  |b H45 2002eb 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 4 |a 530.13  |2 22 
049 |a UAMI 
100 1 |a Helffer, Bernard. 
245 1 0 |a Semiclassical analysis, Witten Laplacians, and statistical mechanics /  |c Bernard Helffer. 
260 |a River Edge, NJ :  |b World Scientific,  |c ©2002. 
300 |a 1 online resource (ix, 179 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on partial differential equations and applications ;  |v v. 1 
504 |a Includes bibliographical references (pages 169-176) and index. 
588 0 |a Print version record. 
505 0 |a Ch. 1. Introduction. 1.1. Laplace integrals. 1.2. The problems in statistical mechanics. 1.3. Semi-classical analysis and transfer operators. 1.4. About the contents -- ch. 2. Witten Laplacians approach. 2.1. De Rham Complex. 2.2. Witten Complex. 2.3. Witten Laplacians. 2.4. Semi-classical considerations. 2.5. An alternative point of view: Dirichlet forms. 2.6. A nice formula for the covariance. 2.7. Notes -- ch. 3. Problems in statistical mechanics with discrete spins. 3.1. The Curie-Weiss model. 3.2. The 1-d Ising model. 3.3. The 2-d Ising model. 3.4. Notes -- ch. 4. Laplace integrals and transfer operators. 4.1. Introduction. 4.2. Classical Laplace method. 4.3. The method of transfer operators. 4.4. Elementary properties of operators with integral kernels. 4.5. Elementary properties of the transfer operator. 4.6. Operators with strictly positive kernel and application. 4.7. Thermodynamic limit. 4.8. Mean value. 4.9. Pair correlation. 4.10. 2-dimensional lattices. 4.11. Notes -- ch. 5. Semi-classical analysis for the transfer operators. 5.1. Introduction. 5.2. Explicit computations for the harmonic Kac operator. 5.3. Harmonic approximation for the transfer operator. 5.4. WKB constructions for the transfer operator. 5.5. The case of the Schrödinger operator in dimension 1. 5.6. Harmonic approximation for the transfer operator: upper bounds. 5.7. First conclusions about the splitting. 5.8. Some elements about the decay. 5.9. Splitting revisited. 5.10. Notes -- ch. 6. Basic facts in spectral theory and on the Schrödinger operator. 6.1. Introduction. 6.2. Selfadjoint operators, spectrum and spectral decomposition. 6.3. Discrete spectrum, essential spectrum. 6.4. Essentially selfadjoint operators. 6.5. Examples. 6.6. More on selfadjointness. 6.7. The max-min principle. 6.8. Compactness. 6.9. Notes -- ch. 7. Log-Sobolev inequalities. 7.1. Introduction. 7.2. Log-Sobolev inequalities in the strictly convex case. 7.3. Around Herbst's argument : necessary conditions for log-Sobolev inequalities. 7.4. Extension of the Bakry-Emery argument : convexity at infinity. 7.5. The case of the circle. 7.6. The case of the line. 7.7. General remarks. 7.8. Notes -- ch. 8. Uniform decay of correlations. 8.1. Introduction. 8.2. Lower bound for the spectrum of the Witten Laplacian. 8.3. Uniform estimates for a family of 1-dimensional Witten Laplacians. 8.4. A proof of the decay of correlations. 8.5. Generalized Brascamp-Lieb inequality. 8.6. Notes -- ch. 9. Uniform log-Sobolev inequalities. 9.1. Introduction and preliminaries. 9.2. Some log-Sobolev inequality for effective single spin phase. 9.3. The role of the decay estimates for log-Sobolev inequality. 9.4. Second part of the proof of the log-Sobolev inequality. 9.5. Conclusion. 9.6. Notes. 
520 |a This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniques, such as the transfer matrix approach and its semiclassical analysis. The author concludes by providing a complete proof of the uniform Log-Sobolev inequality. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Statistical mechanics. 
650 6 |a Mécanique statistique. 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Statistical mechanics  |2 fast 
650 7 |a Mecânica estatística.  |2 larpcal 
776 0 8 |i Print version:  |a Helffer, Bernard.  |t Semiclassical analysis, Witten Laplacians, and statistical mechanics.  |d River Edge, NJ : World Scientific, ©2002  |z 9812380981  |z 9789812380982  |w (DLC) 2003271032  |w (OCoLC)52819715 
830 0 |a Series on partial differential equations and applications ;  |v v. 1. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210589  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684686 
938 |a ebrary  |b EBRY  |n ebr10201301 
938 |a EBSCOhost  |b EBSC  |n 210589 
938 |a YBP Library Services  |b YANK  |n 2736140 
994 |a 92  |b IZTAP