|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn614463116 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
020601s2002 nju ob 000 0 eng d |
040 |
|
|
|a CaPaEBR
|b eng
|e pn
|c ADU
|d E7B
|d OCLCQ
|d CUY
|d N$T
|d YDXCP
|d DKDLA
|d OCLCQ
|d FVL
|d OCLCQ
|d OCLCO
|d OCLCF
|d STF
|d OCLCQ
|d COCUF
|d AGLDB
|d CCO
|d PIFBR
|d OCLCQ
|d U3W
|d WRM
|d OCLCQ
|d VTS
|d NRAMU
|d INT
|d VT2
|d OCLCQ
|d TKN
|d KNM
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 181369120
|a 285164181
|a 465656113
|a 474795383
|a 647683527
|a 722614985
|a 728032842
|a 888834967
|a 961617183
|a 962686662
|
020 |
|
|
|a 9789812776853
|q (electronic bk.)
|
020 |
|
|
|a 9812776850
|q (electronic bk.)
|
020 |
|
|
|a 9789812381040
|
020 |
|
|
|a 981238104X
|
020 |
|
|
|z 981238104X
|
029 |
1 |
|
|a AU@
|b 000049162869
|
029 |
1 |
|
|a AU@
|b 000053251604
|
029 |
1 |
|
|a DEBBG
|b BV043130351
|
029 |
1 |
|
|a DEBSZ
|b 422168467
|
029 |
1 |
|
|a GBVCP
|b 803163452
|
029 |
1 |
|
|a NZ1
|b 12808088
|
035 |
|
|
|a (OCoLC)614463116
|z (OCoLC)181369120
|z (OCoLC)285164181
|z (OCoLC)465656113
|z (OCoLC)474795383
|z (OCoLC)647683527
|z (OCoLC)722614985
|z (OCoLC)728032842
|z (OCoLC)888834967
|z (OCoLC)961617183
|z (OCoLC)962686662
|
050 |
|
4 |
|a QC174.7.P7
|b Q33 2002eb
|
072 |
|
7 |
|a SCI
|x 057000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.12
|2 21
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Quantum interacting particle systems :
|b lecture notes of the Volterra-CIRM International School, Trento, Italy, 23-29 September 2000 /
|c edited by Luigi Accardi, Franco Fagnola.
|
260 |
|
|
|a River Edge, N.J. :
|b World Scientific Pub.,
|c ©2002.
|
300 |
|
|
|a 1 online resource (xix, 336 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a QP-PQ, quantum probability and white noise analysis ;
|v v. 14
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Ch. 1. Lectures on quantum interacting particle systems / L. Accardi and S. Kozyrev -- ch. 2. Lectures on the qualitative analysis of quantum Markov semigroups / F. Fagnola and R. Rebolledo -- ch. 3. Analysis of classical and quantum interacting particle systems / B. Zegarliński.
|
520 |
|
|
|a The problem of extending ideas and results on the dynamics of infinite classical lattice systems to the quantum domain naturally arises in different branches of physics (nonequilibrium statistical mechanics, quantum optics, solid state ...) and new momentum from the development of quantum computer and quantum neural networks (which are in fact interacting arrays of binary systems) has been found. The stochastic limit of quantum theory allowed to deduce, as limits of the usual Hamiltonian systems, a new class of quantum stochastic flows which, when restricted to an appropriate Abelian subalgebra, produces precisely those interacting particle systems studied in classical statistical mechanics. Moreover, in many interesting cases, the underlying classical process "drives" the quantum one, at least as far as ergodicity or convergence to equilibrium are concerned. Thus many deep results concerning classical systems can be directly applied to carry information on the corresponding quantum system. The thermodynamic limit itself is obtained thanks to a technique (the four-semigroup method, new even in the classical case) which reduces the infinitesimal structure of a stochastic flow to that of four semigroups canonically associated to it (Chap. 1). Simple and effective methods to analyze qualitatively the ergodic behavior of quantum Markov semigroups are discussed in Chap. 2. Powerful estimates used to control the infinite volume limit, ergodic behavior and the spectral gap (Gaussian, exponential and hypercontractive bounds, classical and quantum logarithmic Sobolev inequalities ...) are discussed in Chap. 3.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Quantum theory.
|
650 |
|
0 |
|a Hamiltonian systems.
|
650 |
|
0 |
|a Stochastic processes.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
|
2 |
|a Quantum Theory
|
650 |
|
2 |
|a Stochastic Processes
|
650 |
|
6 |
|a Théorie quantique.
|
650 |
|
6 |
|a Systèmes hamiltoniens.
|
650 |
|
6 |
|a Processus stochastiques.
|
650 |
|
6 |
|a Physique mathématique.
|
650 |
|
7 |
|a SCIENCE
|x Physics
|x Quantum Theory.
|2 bisacsh
|
650 |
|
7 |
|a Hamiltonian systems.
|2 fast
|0 (OCoLC)fst00950772
|
650 |
|
7 |
|a Mathematical physics.
|2 fast
|0 (OCoLC)fst01012104
|
650 |
|
7 |
|a Quantum theory.
|2 fast
|0 (OCoLC)fst01085128
|
650 |
|
7 |
|a Stochastic processes.
|2 fast
|0 (OCoLC)fst01133519
|
700 |
1 |
|
|a Accardi, L.
|q (Luigi),
|d 1947-
|
700 |
1 |
|
|a Fagnola, Franco.
|
710 |
2 |
|
|a Centro internazionale per la ricerca matematica (Trento, Italy)
|
776 |
0 |
8 |
|i Print version:
|t Quantum interacting particle systems.
|d River Edge, N.J. : World Scientific Pub., ©2002
|z 981238104X
|z 9789812381040
|w (DLC) 2002069003
|w (OCoLC)50041043
|
830 |
|
0 |
|a QP-PQ, quantum probability and white noise analysis ;
|v v. 14.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210590
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24684682
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10201217
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 210590
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2733790
|
994 |
|
|
|a 92
|b IZTAP
|