Cargando…

Relative index theory, determinants and torsion for open manifolds /

For closed manifolds, there is a highly elaborated theory of number-valued invariants, attached to the underlying manifold, structures and differential operators. On open manifolds, nearly all of this fails, with the exception of some special classes. The goal of this monograph is to establish for o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Eichhorn, Jürgen
Autor Corporativo: World Scientific (Firm)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2009.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Introduction
  • I. Absolute invariants for open manifolds and bundles. 1. Absolute characteristic numbers. 2. Index theorems for open manifolds
  • II. Non-linear Sobolev structures. 1. Clifford bundles, generalized Dirac operators and associated Sobolev spaces. 2. Uniform structures of metric spaces. 3. Completed manifolds of maps. 4. Uniform structures of manifolds and Clifford bundles. 5. The classification problem, new (co- )homologies and relative characteristic numbers
  • III. The heat kernel of generalized Dirac operators. 1. Invariance properties of the spectrum and the heat kernel. 2. Duhamel's principle, scattering theory and trace class conditions
  • IV. Trace class properties. 1. Variation of the Clifford connection. 2. Variation of the Clifford structure. 3. Additional topological perturbations
  • V. Relative index theory. 1. Relative index theorems, the spectral shift function and the scattering index
  • VI. Relative [symbol]-functions, [symbol]-functions, determinants and torsion. 1. Pairs of asymptotic expansions. 2. Relative [symbol]-functions. 3. Relative determinants and QFT. 4. Relative analytic torsion. 5. Relative [symbol]-invariants. 6. Examples and applications
  • VII. Scattering theory for manifolds with injectivity radius zero. 1. Uniform structures defined by decay functions. 2. The injectivity radius and weighted Sobolev spaces. 3. Mapping properties of e[symbol]. 4. Proof of the trace class property
  • References
  • List of notations
  • Index.