Cargando…

Linear regression analysis : theory and computing /

This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yan, Xin, 1955-
Autor Corporativo: World Scientific (Firm)
Otros Autores: Su, Xiaogang, 1974-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2009.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn613658550
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cuu|||uu|||
008 100512s2009 si a ob 001 0 eng d
010 |z  2009012000 
040 |a LLB  |b eng  |e pn  |c LLB  |d UPM  |d YDXCP  |d N$T  |d OSU  |d EBLCP  |d IDEBK  |d E7B  |d OCLCQ  |d FVL  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d JBG  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d NRAMU  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d LEAUB  |d M8D  |d UKAHL  |d OCLCQ  |d UKCRE  |d VLY  |d AJS  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO 
019 |a 500921780  |a 556187251  |a 647851060  |a 748210113  |a 748594051  |a 816360007  |a 960206363  |a 961532606  |a 962600059  |a 988515933  |a 992004775  |a 1037920604  |a 1038598529  |a 1045527256  |a 1058783339  |a 1064639921  |a 1081258598  |a 1086410802  |a 1096962099  |a 1153527535  |a 1162431096  |a 1228598283  |a 1290066608  |a 1300629982  |a 1392419617 
020 |a 9789812834119  |q (electronic bk.) 
020 |a 9812834117  |q (electronic bk.) 
020 |a 1282441698 
020 |a 9781282441699 
020 |a 9789814470087 
020 |a 9814470082 
020 |a 9786612441691 
020 |a 6612441690 
020 |z 9812834109 
020 |z 9789812834102 
029 1 |a AU@  |b 000051378699 
029 1 |a AU@  |b 000062471280 
029 1 |a AU@  |b 000069149428 
029 1 |a DEBBG  |b BV043132476 
029 1 |a DEBBG  |b BV044141451 
029 1 |a DEBSZ  |b 372600492 
029 1 |a DEBSZ  |b 37931309X 
029 1 |a DEBSZ  |b 421915137 
029 1 |a DEBSZ  |b 445569859 
029 1 |a NZ1  |b 14242494 
035 |a (OCoLC)613658550  |z (OCoLC)500921780  |z (OCoLC)556187251  |z (OCoLC)647851060  |z (OCoLC)748210113  |z (OCoLC)748594051  |z (OCoLC)816360007  |z (OCoLC)960206363  |z (OCoLC)961532606  |z (OCoLC)962600059  |z (OCoLC)988515933  |z (OCoLC)992004775  |z (OCoLC)1037920604  |z (OCoLC)1038598529  |z (OCoLC)1045527256  |z (OCoLC)1058783339  |z (OCoLC)1064639921  |z (OCoLC)1081258598  |z (OCoLC)1086410802  |z (OCoLC)1096962099  |z (OCoLC)1153527535  |z (OCoLC)1162431096  |z (OCoLC)1228598283  |z (OCoLC)1290066608  |z (OCoLC)1300629982  |z (OCoLC)1392419617 
050 4 |a QA278.2  |b .Y36 2009eb 
072 7 |a MAT  |x 029030  |2 bisacsh 
072 7 |a PBT  |2 bicssc 
082 0 4 |a 519.536  |2 22 
049 |a UAMI 
100 1 |a Yan, Xin,  |d 1955- 
245 1 0 |a Linear regression analysis :  |b theory and computing /  |c Xin Yan, Xiao Gang Su. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2009. 
300 |a 1 online resource (xix, 328 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 317-324) and index. 
505 0 |a 1. Introduction. 1.1. Regression model. 1.2. Goals of regression analysis. 1.3. Statistical computing in regression analysis -- 2. Simple linear regression. 2.1. Introduction. 2.2. Least squares estimation. 2.3. Statistical properties of the least squares estimation. 2.4. Maximum likelihood estimation. 2.5. Confidence interval on regression mean and regression prediction. 2.6. Statistical inference on regression parameters. 2.7. Residual analysis and model diagnosis. 2.8. Example -- 3. Multiple linear regression. 3.1. Vector space and projection. 3.2. Matrix form of multiple linear regression. 3.3. Quadratic form of random variables. 3.4. Idempotent matrices. 3.5. Multivariate normal distribution. 3.6. Quadratic form of the multivariate normal variables. 3.7. Least squares estimates of the multiple regression parameters. 3.8. Matrix form of the simple linear regression. 3.9. Test for full model and reduced model. 3.10. Test for general linear hypothesis. 3.11. The least squares estimates of multiple regression parameters under linear restrictions. 3.12. Confidence intervals of mean and prediction in multiple regression. 3.13. Simultaneous test for regression parameters. 3.14. Bonferroni confidence region for regression parameters. 3.15. Interaction and confounding. 3.16. Regression with dummy variables. 3.17. Collinearity in multiple linear regression. 3.18. Linear model in centered form. 3.19. Numerical computation of LSE via QR decomposition. 3.20. Analysis of regression residual. 3.21. Check for normality of the error term in multiple regression. 3.22. Example -- 4. Detection of outliers and influential observations in multiple linear regression. 4.1. Model diagnosis for multiple linear regression. 4.2. Detection of outliers in multiple linear regression. 4.3. Detection of influential observations in multiple linear regression. 4.4. Test for mean-shift outliers. 4.5. Graphical display of regression diagnosis. 4.6. Test for inferential observations. 4.7. Example -- 5. Model selection. 5.1. Effect of underfitting and overfitting. 5.2. All possible regressions. 5.3. Stepwise selection. 5.4. Examples. 5.5. Other related issues -- 6. Model diagnostics. 6.1. Test heteroscedasticity. 6.2. Detection of regression functional form -- 7. Extensions of least squares. 7.1. Non-full-rank linear regression models. 7.2. Generalized least squares. 7.3. Ridge regression and LASSO. 7.4. Parametric nonlinear regression -- 8. Generalized linear models. 8.1. Introduction: a motivating example. 8.2. Components of GLM. 8.3. Maximum likelihood estimation of GLM. 8.4. Statistical inference and other issues in GLM. 8.5. Logistic regression for binary data. 8.6. Poisson regression for count data -- 9. Bayesian linear regression. 9.1. Bayesian linear models. Bayesian model averaging. 
520 |a This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Regression analysis. 
650 2 |a Regression Analysis 
650 6 |a Analyse de régression. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Regression Analysis.  |2 bisacsh 
650 7 |a Regression analysis  |2 fast 
700 1 |a Su, Xiaogang,  |d 1974- 
710 2 |a World Scientific (Firm) 
776 1 |z 9812834109 
776 1 |z 9789812834102 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305216  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686087 
938 |a EBL - Ebook Library  |b EBLB  |n EBL477274 
938 |a ebrary  |b EBRY  |n ebr10361753 
938 |a EBSCOhost  |b EBSC  |n 305216 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 244169 
938 |a YBP Library Services  |b YANK  |n 3161652 
938 |a Internet Archive  |b INAR  |n linearregression0000yanx 
994 |a 92  |b IZTAP