Cargando…

Advanced classical field theory /

Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Giachetta, G.
Autor Corporativo: World Scientific (Firm)
Otros Autores: Mangiarotti, L., Sardanashvili, G. A. (Gennadiĭ Aleksandrovich)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific, ©2009.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn613387836
003 OCoLC
005 20231017213018.0
006 m o d
007 cr buu|||uu|||
008 100511s2009 si ob 001 0 eng d
040 |a LLB  |b eng  |e pn  |c LLB  |d N$T  |d EBLCP  |d YDXCP  |d IDEBK  |d E7B  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d NLGGC  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d JBG  |d AZK  |d AGLDB  |d MOR  |d PIFAG  |d VGM  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d CRU  |d ICG  |d OCLCQ  |d INT  |d VT2  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 536309762  |a 593222171  |a 647850029  |a 764530940  |a 961638237  |a 962623023 
020 |a 9789812838964  |q (electronic bk.) 
020 |a 9812838961  |q (electronic bk.) 
020 |z 9812838953 
020 |z 9789812838957 
029 1 |a AU@  |b 000054173047 
029 1 |a DEBBG  |b BV043147630 
029 1 |a DEBBG  |b BV044141355 
029 1 |a DEBSZ  |b 372600344 
029 1 |a DEBSZ  |b 379312646 
029 1 |a DEBSZ  |b 421914432 
029 1 |a DEBSZ  |b 445568836 
029 1 |a NZ1  |b 13862737 
035 |a (OCoLC)613387836  |z (OCoLC)536309762  |z (OCoLC)593222171  |z (OCoLC)647850029  |z (OCoLC)764530940  |z (OCoLC)961638237  |z (OCoLC)962623023 
050 4 |a QC173.7  |b .G523 2009eb 
072 7 |a SCI  |x 067000  |2 bisacsh 
082 0 4 |a 530.14  |2 22 
049 |a UAMI 
100 1 |a Giachetta, G. 
245 1 0 |a Advanced classical field theory /  |c Giovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific,  |c ©2009. 
300 |a 1 online resource (x, 382 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references (pages 359-367) and index. 
505 0 |a 1. Differential calculus on fibre bundles. 1.1. Geometry of fibre bundles. 1.2. Jet manifolds. 1.3. Connections on fibre bundles. 1.4. Composite bundles. 1.5. Higher order jet manifolds. 1.6. Differential operators and equations. 1.7. Infinite order jet formalism -- 2. Lagrangian field theory on fibre bundles. 2.1. Variational bicomplex. 2.2. Lagrangian symmetries. 2.3. Gauge symmetries. 2.4. First order Lagrangian field theory -- 3. Grassmann-graded Lagrangian field theory. 3.1. Grassmann-graded algebraic calculus. 3.2. Grassmann-graded differential calculus. 3.3. Geometry of graded manifolds. 3.4. Grassmann-graded variational bicomplex. 3.5. Lagrangian theory of even and odd fields -- 4. Lagrangian BRST theory. 4.1. Noether identities. The Koszul-Tate complex. 4.2. Second Noether theorems in a general setting. 4.3. BRST operator. 4.4. BRST extended Lagrangian field theory -- 5. Gauge theory on principal bundles. 5.1. Geometry of Lie groups. 5.2. Bundles with structure groups. 5.3. Principal bundles. 5.4. Principal connections. Gauge fields. 5.5. Canonical principal connection. 5.6. Gauge transformations. 5.7. Geometry of associated bundles. Matter fields. 5.8. Yang-Mills gauge theory. 5.9. Yang-Mills supergauge theory. 5.10. Reduced structure. Higgs fields -- 6. Gravitation theory on natural bundles. 6.1. Natural bundles. 6.2. Linear world connections. 6.3. Lorentz reduced structure. Gravitational field. 6.4. Space-time structure. 6.5. Gauge gravitation theory. 6.6. Energy-momentum conservation law -- 7. Spinor fields. 7.1. Clifford algebras and Dirac spinors. 7.2. Dirac spinor structure. 7.3. Universal spinor structure. 7.4. Dirac fermion fields -- 8. Topological field theories. 8.1. Topological characteristics of principal connections. 8.2. Chern-Simons topological field theory. 8.3. Topological BF theory. 8.4. Lagrangian theory of submanifolds -- 9. Covariant Hamiltonian field theory. 9.1. Polysymplectic Hamiltonian formalism. 9.2. Associated Hamiltonian and Lagrangian systems. 9.3. Hamiltonian conservation laws. 9.4. Quadratic Lagrangian and Hamiltonian systems. 9.5. Example. Yang-Mills gauge theory. 9.6. Variation Hamilton equations. Jacobi fields -- 10. Appendixes. 10.1. Commutative algebra. 10.2. Differential operators on modules. 10.3. Homology and cohomology of complexes. 10.4. Cohomology of groups. 10.5. Cohomology of Lie algebras. 10.6. Differential calculus over a commutative ring. 10.7. Sheaf cohomology. 10.8. Local-ringed spaces. 10.9. Cohomology of smooth manifolds. 10.10. Leafwise and fibrewise cohomology. 
520 |a Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories - gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory - are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Field theory (Physics)  |x Mathematics. 
650 0 |a Lagrange equations. 
650 6 |a Théorie des champs (Physique)  |x Mathématiques. 
650 6 |a Équations de Lagrange. 
650 7 |a SCIENCE  |x Waves & Wave Mechanics.  |2 bisacsh 
650 7 |a Field theory (Physics)  |x Mathematics  |2 fast 
650 7 |a Lagrange equations  |2 fast 
700 1 |a Mangiarotti, L. 
700 1 |a Sardanashvili, G. A.  |q (Gennadiĭ Aleksandrovich) 
710 2 |a World Scientific (Firm) 
776 1 |z 9812838953 
776 1 |z 9789812838957 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305287  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686218 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL477152 
938 |a ebrary  |b EBRY  |n ebr10361582 
938 |a EBSCOhost  |b EBSC  |n 305287 
938 |a YBP Library Services  |b YANK  |n 3161723 
994 |a 92  |b IZTAP