Cargando…

Nanoscale processes on insulating surfaces /

Ionic crystals are among the simplest structures in nature. They can be easily cleaved in air and in vacuum, and the resulting surfaces are atomically flat on areas hundreds of nanometers wide. With the development of scanning probe microscopy, these surfaces have become an ideal "playground&qu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gnecco, Enrico
Autor Corporativo: World Scientific (Firm)
Otros Autores: Szymoński, Marek
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2009.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn613386751
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cuu|||uu|||
008 100511s2009 si a ob 001 0 eng d
040 |a LLB  |b eng  |e pn  |c LLB  |d N$T  |d E7B  |d OCLCQ  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AZK  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d JBG  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d LEAUB  |d UKCRE  |d OCLCQ  |d OCLCO  |d MHW  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 671655977  |a 694144273  |a 764546225  |a 961511484  |a 962633166  |a 988440951  |a 991961903  |a 1037797167  |a 1038664613  |a 1055374871  |a 1062889308  |a 1086434653  |a 1153468269  |a 1228600282 
020 |a 9789812837639  |q (electronic bk.) 
020 |a 9812837639  |q (electronic bk.) 
020 |z 9812837620 
020 |z 9789812837622 
029 1 |a AU@  |b 000049007434 
029 1 |a AU@  |b 000051397208 
029 1 |a AU@  |b 000058413375 
029 1 |a DEBBG  |b BV043142989 
029 1 |a DEBBG  |b BV044179593 
029 1 |a DEBSZ  |b 37280232X 
029 1 |a DEBSZ  |b 405720246 
029 1 |a DEBSZ  |b 421676612 
029 1 |a DEBSZ  |b 445555130 
029 1 |a NZ1  |b 13642902 
035 |a (OCoLC)613386751  |z (OCoLC)671655977  |z (OCoLC)694144273  |z (OCoLC)764546225  |z (OCoLC)961511484  |z (OCoLC)962633166  |z (OCoLC)988440951  |z (OCoLC)991961903  |z (OCoLC)1037797167  |z (OCoLC)1038664613  |z (OCoLC)1055374871  |z (OCoLC)1062889308  |z (OCoLC)1086434653  |z (OCoLC)1153468269  |z (OCoLC)1228600282 
050 4 |a QH212.S33  |b G64 2009eb 
072 7 |a SCI  |x 047000  |2 bisacsh 
082 0 4 |a 502.82  |2 22 
049 |a UAMI 
100 1 |a Gnecco, Enrico. 
245 1 0 |a Nanoscale processes on insulating surfaces /  |c Enrico Gnecco, Marek Szymonski. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2009. 
300 |a 1 online resource (xiv, 186 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 163-181) and index. 
505 0 |a 1. Crystal structures of insulating surfaces. 1.1. Halide surfaces. 1.2. Oxide surfaces -- 2. Preparation techniques of insulating surfaces. 2.1. Ultra high vacuum. 2.2. Preparation of bulk insulating surfaces. 2.3. Deposition of insulating films, metals and organic molecules -- 3. Scanning probe microscopy in ultra high vacuum. 3.1. Atomic force microscopy. 3.2. Scanning tunneling microscopy. 3.3. Atomistic modeling of SPM -- 4. Scanning probe microscopy on bulk insulating surfaces. 4.1. Halide surfaces. 4.2. Oxide surfaces. 4.3. Modeling AFM on bulk insulating surfaces -- 5. Scanning probe microscopy on thin insulating films. 5.1. Halide films on metals. 5.2. Halide films on semiconductors. 5.3. Heteroepitaxial growth of alkali halide films. 5.4. Oxide films. 5.5. Modeling AFM on thin insulating films -- 6. Interaction of ions, electrons and photons with halide surfaces. 6.1. Ion bombardment of alkali halides. 6.2. Electron and photon stimulated desorption -- 7. Surface patterning with electrons and photons. 7.1. Surface topography modification by electronic excitations. 7.2. Nanoscale pits on alkali halide surfaces -- 8. Surface patterning with ions. 8.1. Ripple formation by ion bombardment. 8.2. A case study : ion beam modifications of KBr surfaces -- 9. Metal deposition on insulating surfaces. 9.1. Metals on halide surfaces. 9.2. Metals on oxide surfaces. 9.3. Metals on thin insulating films. 9.4. Modeling AFM on metal clusters on insulators -- 10. Organic molecules on insulating surfaces. 10.1. Chemical structures of organic molecules. 10.2. Organic molecules on halide surfaces. 10.3. Organic molecules on oxide surfaces. 10.4. Organic molecules on thin insulating films. 10.5. Modeling AFM on organic molecules on insulators -- 11. Scanning probe spectroscopy on insulating surfaces. 11.1. Force spectroscopy on insulating surfaces. 11.2. Tunneling spectroscopy on thin insulating films. 11.3. Tunneling spectroscopy on metal clusters. 11.4. Tunneling spectroscopy on organic molecules -- 12. Nanotribology on insulating surfaces. 12.1. Friction mechanisms at the atomic scale. 12.2. Friction on halide surfaces. 12.3. Nanowear processes on insulating surfaces. 12.4. Modeling nanotribology on insulating surfaces -- 13. Nanomanipulation on insulating surfaces. 13.1. Nanomanipulation experiments on insulating surfaces. 13.2. Modeling nanomanipulation on insulating surfaces. 
520 |a Ionic crystals are among the simplest structures in nature. They can be easily cleaved in air and in vacuum, and the resulting surfaces are atomically flat on areas hundreds of nanometers wide. With the development of scanning probe microscopy, these surfaces have become an ideal "playground" to investigate several phenomena occurring on the nanometer scale. This book focuses on the fundamental studies of atomically resolved imaging, nanopatterning, metal deposition, molecular self-assembling and nanotribological processes occurring on ionic crystal surfaces. Here, a significant variety of structures are created by nanolithography, annealing and irradiation by electrons, ions or photons, and are used to confine metal particles and organic molecules or to improve our basic understanding of friction and wear on the atomic scale. Metal oxides with wide band gap are also discussed. Altogether, the results obtained so far will have an undoubted impact on the future development of nanoelectronics and nanomechanics 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Scanning probe microscopy. 
650 0 |a Nanoelectronics. 
650 0 |a Ionic crystals. 
650 0 |a Thin films  |x Surfaces. 
650 2 |a Microscopy, Scanning Probe 
650 6 |a Microscopie à sonde à balayage. 
650 6 |a Nanoélectronique. 
650 6 |a Cristaux ioniques. 
650 6 |a Couches minces  |x Surfaces. 
650 7 |a SCIENCE  |x Microscopes & Microscopy.  |2 bisacsh 
650 7 |a Ionic crystals  |2 fast 
650 7 |a Nanoelectronics  |2 fast 
650 7 |a Scanning probe microscopy  |2 fast 
650 7 |a Thin films  |x Surfaces  |2 fast 
700 1 |a Szymoński, Marek. 
710 2 |a World Scientific (Firm) 
776 1 |z 9812837620 
776 1 |z 9789812837622 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340499  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686186 
938 |a ebrary  |b EBRY  |n ebr10422412 
938 |a EBSCOhost  |b EBSC  |n 340499 
938 |a YBP Library Services  |b YANK  |n 3511362 
994 |a 92  |b IZTAP