|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn612412955 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr buu|||uu||| |
008 |
100507s2009 si ob 001 0 eng d |
040 |
|
|
|a LLB
|b eng
|e pn
|c LLB
|d N$T
|d E7B
|d OCLCQ
|d FVL
|d OCLCE
|d OCLCQ
|d DEBSZ
|d YDXCP
|d OCLCO
|d OCLCQ
|d OCLCF
|d OCLCQ
|d AZK
|d ZCU
|d MERUC
|d OCLCQ
|d JBG
|d OCLCQ
|d VTS
|d ICG
|d AU@
|d OCLCQ
|d STF
|d DKC
|d OCLCQ
|d K6U
|d OCLCQ
|d M8D
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 671655896
|a 694144310
|a 698022785
|a 712995106
|a 719420478
|a 743436987
|a 748608579
|a 760295338
|a 961505212
|a 962693609
|
020 |
|
|
|a 9789814282437
|q (electronic bk.)
|
020 |
|
|
|a 981428243X
|q (electronic bk.)
|
020 |
|
|
|z 9814282421
|
020 |
|
|
|z 9789814282420
|
029 |
1 |
|
|a AU@
|b 000051451676
|
029 |
1 |
|
|a DEBBG
|b BV043126290
|
029 |
1 |
|
|a DEBBG
|b BV044178927
|
029 |
1 |
|
|a DEBSZ
|b 372737854
|
029 |
1 |
|
|a DEBSZ
|b 407526056
|
029 |
1 |
|
|a DEBSZ
|b 421676353
|
029 |
1 |
|
|a DEBSZ
|b 445579579
|
029 |
1 |
|
|a NZ1
|b 14243384
|
035 |
|
|
|a (OCoLC)612412955
|z (OCoLC)671655896
|z (OCoLC)694144310
|z (OCoLC)698022785
|z (OCoLC)712995106
|z (OCoLC)719420478
|z (OCoLC)743436987
|z (OCoLC)748608579
|z (OCoLC)760295338
|z (OCoLC)961505212
|z (OCoLC)962693609
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA221
|b .G33 2009eb
|
072 |
|
7 |
|a MAT
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.4
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Gal, Sorin G.,
|d 1953-
|
245 |
1 |
0 |
|a Approximation by complex Bernstein and convolution type operators /
|c Sorin G. Gal.
|
260 |
|
|
|a Singapore ;
|a Hackensack, N.J. :
|b World Scientific Pub. Co.,
|c ©2009.
|
300 |
|
|
|a 1 online resource (xii, 337 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a Series on concrete and applicable mathematics,
|x 1793-1142 ;
|v v. 8
|
504 |
|
|
|a Includes bibliographical references (pages 327-336) and index.
|
505 |
0 |
|
|a 1. Bernstein-type operators of one complex variable. 1.0. Auxiliary results in complex analysis. 1.1. Berstein polynomials. 1.2. Iterates of Bernstein polynomials. 1.3. Generalized Voronovskaja theorems for Bernstein polynomials. 1.4. Butzer's linear combination of Bernstein polynomials. 1.5. q-Bernstein polynomials. 1.6. Bernstein-Stancu polynomials. 1.7. Bernstein-Kantorovich type polynomials. 1.8. Favard-Szász-Mirakjan operators. 1.9. Baskakov operators. 1.10. Balázs-Szabados operators. 1.11. Bibliographical notes and open problems -- 2. Bernstein-type operators of several complex variables. 2.1. Introduction. 2.2. Bernstein polynomials. 2.3. Favard-Szász-Mirakjan operators. 2.4. Baskakov operators. 2.5. Bibliographical notes and open problems -- 3. Complex convolutions. 3.1. Linear polynomial convolutions. 3.2. Linear non-polynomial convolutions. 3.3. Nonlinear complex convolutions. 3.4. Bibliographical notes and open problems.
|
520 |
|
|
|a The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals. The operators studied are of the following types : Bernstein, Bernstein-Faber, Bernstein-Butzer, q-Bernstein, Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szász-Mirakjan, Baskakov and Balázs-Szabados. The second main objective is to provide a study of the approximation and geometric properties of several types of complex convolutions : the de la Vallée Poussin, Fejér, Riesz-Zygmund, Jackson, Rogosinski, Picard, Poisson-Cauchy, Gauss-Weierstrass, q-Picard, q-Gauss-Weierstrass, Post-Widder, rotation-invariant, Sikkema and nonlinear. Several applications to partial differential equations (PDEs) are also presented. Many of the open problems encountered in the studies are proposed at the end of each chapter. For further research, the monograph suggests and advocates similar studies for other complex Bernstein-type operators, and for other linear and nonlinear convolutions.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2011.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2011
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Approximation theory.
|
650 |
|
0 |
|a Operator theory.
|
650 |
|
0 |
|a Bernstein polynomials.
|
650 |
|
0 |
|a Convolutions (Mathematics)
|
650 |
|
6 |
|a Théorie de l'approximation.
|
650 |
|
6 |
|a Théorie des opérateurs.
|
650 |
|
6 |
|a Polynômes de Bernstein.
|
650 |
|
6 |
|a Convolutions (Mathématiques)
|
650 |
|
7 |
|a MATHEMATICS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Approximation theory.
|2 fast
|0 (OCoLC)fst00811829
|
650 |
|
7 |
|a Bernstein polynomials.
|2 fast
|0 (OCoLC)fst00830782
|
650 |
|
7 |
|a Convolutions (Mathematics)
|2 fast
|0 (OCoLC)fst00877310
|
650 |
|
7 |
|a Operator theory.
|2 fast
|0 (OCoLC)fst01046419
|
710 |
2 |
|
|a World Scientific (Firm)
|
776 |
1 |
|
|z 9814282421
|
776 |
1 |
|
|z 9789814282420
|
830 |
|
0 |
|a Series on concrete and applicable mathematics ;
|v v. 8.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340525
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10422512
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 340525
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3511482
|
994 |
|
|
|a 92
|b IZTAP
|