Cargando…

Approximation by complex Bernstein and convolution type operators /

The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals. T...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gal, Sorin G., 1953-
Autor Corporativo: World Scientific (Firm)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2009.
Colección:Series on concrete and applicable mathematics ; v. 8.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn612412955
003 OCoLC
005 20231017213018.0
006 m o d
007 cr buu|||uu|||
008 100507s2009 si ob 001 0 eng d
040 |a LLB  |b eng  |e pn  |c LLB  |d N$T  |d E7B  |d OCLCQ  |d FVL  |d OCLCE  |d OCLCQ  |d DEBSZ  |d YDXCP  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AZK  |d ZCU  |d MERUC  |d OCLCQ  |d JBG  |d OCLCQ  |d VTS  |d ICG  |d AU@  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d K6U  |d OCLCQ  |d M8D  |d OCLCO  |d OCLCQ 
019 |a 671655896  |a 694144310  |a 698022785  |a 712995106  |a 719420478  |a 743436987  |a 748608579  |a 760295338  |a 961505212  |a 962693609 
020 |a 9789814282437  |q (electronic bk.) 
020 |a 981428243X  |q (electronic bk.) 
020 |z 9814282421 
020 |z 9789814282420 
029 1 |a AU@  |b 000051451676 
029 1 |a DEBBG  |b BV043126290 
029 1 |a DEBBG  |b BV044178927 
029 1 |a DEBSZ  |b 372737854 
029 1 |a DEBSZ  |b 407526056 
029 1 |a DEBSZ  |b 421676353 
029 1 |a DEBSZ  |b 445579579 
029 1 |a NZ1  |b 14243384 
035 |a (OCoLC)612412955  |z (OCoLC)671655896  |z (OCoLC)694144310  |z (OCoLC)698022785  |z (OCoLC)712995106  |z (OCoLC)719420478  |z (OCoLC)743436987  |z (OCoLC)748608579  |z (OCoLC)760295338  |z (OCoLC)961505212  |z (OCoLC)962693609 
042 |a dlr 
050 4 |a QA221  |b .G33 2009eb 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.4  |2 22 
049 |a UAMI 
100 1 |a Gal, Sorin G.,  |d 1953- 
245 1 0 |a Approximation by complex Bernstein and convolution type operators /  |c Sorin G. Gal. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2009. 
300 |a 1 online resource (xii, 337 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Series on concrete and applicable mathematics,  |x 1793-1142 ;  |v v. 8 
504 |a Includes bibliographical references (pages 327-336) and index. 
505 0 |a 1. Bernstein-type operators of one complex variable. 1.0. Auxiliary results in complex analysis. 1.1. Berstein polynomials. 1.2. Iterates of Bernstein polynomials. 1.3. Generalized Voronovskaja theorems for Bernstein polynomials. 1.4. Butzer's linear combination of Bernstein polynomials. 1.5. q-Bernstein polynomials. 1.6. Bernstein-Stancu polynomials. 1.7. Bernstein-Kantorovich type polynomials. 1.8. Favard-Szász-Mirakjan operators. 1.9. Baskakov operators. 1.10. Balázs-Szabados operators. 1.11. Bibliographical notes and open problems -- 2. Bernstein-type operators of several complex variables. 2.1. Introduction. 2.2. Bernstein polynomials. 2.3. Favard-Szász-Mirakjan operators. 2.4. Baskakov operators. 2.5. Bibliographical notes and open problems -- 3. Complex convolutions. 3.1. Linear polynomial convolutions. 3.2. Linear non-polynomial convolutions. 3.3. Nonlinear complex convolutions. 3.4. Bibliographical notes and open problems. 
520 |a The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals. The operators studied are of the following types : Bernstein, Bernstein-Faber, Bernstein-Butzer, q-Bernstein, Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szász-Mirakjan, Baskakov and Balázs-Szabados. The second main objective is to provide a study of the approximation and geometric properties of several types of complex convolutions : the de la Vallée Poussin, Fejér, Riesz-Zygmund, Jackson, Rogosinski, Picard, Poisson-Cauchy, Gauss-Weierstrass, q-Picard, q-Gauss-Weierstrass, Post-Widder, rotation-invariant, Sikkema and nonlinear. Several applications to partial differential equations (PDEs) are also presented. Many of the open problems encountered in the studies are proposed at the end of each chapter. For further research, the monograph suggests and advocates similar studies for other complex Bernstein-type operators, and for other linear and nonlinear convolutions. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Approximation theory. 
650 0 |a Operator theory. 
650 0 |a Bernstein polynomials. 
650 0 |a Convolutions (Mathematics) 
650 6 |a Théorie de l'approximation. 
650 6 |a Théorie des opérateurs. 
650 6 |a Polynômes de Bernstein. 
650 6 |a Convolutions (Mathématiques) 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Approximation theory.  |2 fast  |0 (OCoLC)fst00811829 
650 7 |a Bernstein polynomials.  |2 fast  |0 (OCoLC)fst00830782 
650 7 |a Convolutions (Mathematics)  |2 fast  |0 (OCoLC)fst00877310 
650 7 |a Operator theory.  |2 fast  |0 (OCoLC)fst01046419 
710 2 |a World Scientific (Firm) 
776 1 |z 9814282421 
776 1 |z 9789814282420 
830 0 |a Series on concrete and applicable mathematics ;  |v v. 8. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340525  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10422512 
938 |a EBSCOhost  |b EBSC  |n 340525 
938 |a YBP Library Services  |b YANK  |n 3511482 
994 |a 92  |b IZTAP