Cargando…

Pattern recognition /

This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Theodoridis, Sergios, 1951-
Otros Autores: Koutroumbas, Konstantinos, 1967-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington, MA ; London : Academic Press, ©2009.
Edición:4th ed.
Temas:
Acceso en línea:Texto completo
Texto completo
Descripción
Sumario:This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor.
Descripción Física:1 online resource (xvii, 961 pages) : illustrations
Bibliografía:Includes bibliographical references and index.
ISBN:9781597492720
1597492728
9780080949123
0080949126