Cargando…

Differential geometry and lie groups for physicists /

Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fecko, Marián
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2006.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn607562056
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 100416s2006 enka ob 001 0 eng d
010 |z  2006299989 
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d YDXCP  |d AZU  |d TEFOD  |d OCLNG  |d E7B  |d NRU  |d OCLCQ  |d IDEBK  |d OCLCQ  |d REDDC  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AU@  |d TEFOD  |d OCLCQ  |d COO  |d OCLCQ  |d MERUC  |d UAB  |d OCLCQ  |d OL$  |d OCLCQ  |d VLY  |d LUN  |d MM9  |d UKAHL  |d OCLCO  |d QGK  |d OCLCQ  |d OCLCO 
015 |a GBA647833  |2 bnb 
016 7 |z 013470049  |2 Uk 
019 |a 124067053  |a 171124811  |a 180878189  |a 647613898  |a 741249176  |a 776973400  |a 780998925  |a 1162010753  |a 1170868393  |a 1171074862  |a 1171410600  |a 1241915392  |a 1259236099 
020 |a 9780511648656  |q (electronic bk.) 
020 |a 0511648650  |q (electronic bk.) 
020 |a 0511245211  |q (electronic bk. ;  |q Adobe Reader) 
020 |a 9780511245213  |q (electronic bk. ;  |q Adobe Reader) 
020 |a 0511244460 
020 |a 9780511244469 
020 |a 0511242964  |q (electronic bk. ;  |q Adobe Reader) 
020 |a 9780511242960  |q (electronic bk. ;  |q Adobe Reader) 
020 |z 0521845076 
020 |z 9780521845076 
020 |a 1107164052 
020 |a 9781107164055 
020 |a 0511567677 
020 |a 9780511567674 
020 |a 0511755597 
020 |a 9780511755590 
020 |a 9780521187961  |q (paperback) 
020 |a 0521187966 
029 1 |a AU@  |b 000048762696 
029 1 |a DEBSZ  |b 379299739 
035 |a (OCoLC)607562056  |z (OCoLC)124067053  |z (OCoLC)171124811  |z (OCoLC)180878189  |z (OCoLC)647613898  |z (OCoLC)741249176  |z (OCoLC)776973400  |z (OCoLC)780998925  |z (OCoLC)1162010753  |z (OCoLC)1170868393  |z (OCoLC)1171074862  |z (OCoLC)1171410600  |z (OCoLC)1241915392  |z (OCoLC)1259236099 
037 |a 4A9098F5-C365-43D1-BBE8-C0435A618079  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QC20.7.D52  |b F43 2006eb 
072 7 |a SCI  |x 040000  |2 bisacsh 
072 7 |a K  |2 bicssc 
082 0 4 |a 530.15636  |2 22 
049 |a UAMI 
100 1 |a Fecko, Marián. 
245 1 0 |a Differential geometry and lie groups for physicists /  |c Marián Fecko. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2006. 
300 |a 1 online resource (xv, 697 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 685-686)-and indexes. 
505 0 |a Cover -- Title -- Copyright -- Contents -- Preface -- Introduction -- Chapter 1 The concept of a manifold -- 1.1 Topology and continuous maps -- 1.2 Classes of smoothness of maps of Cartesian spaces -- 1.3 Smooth structure, smooth manifold -- 1.4 Smooth maps of manifolds -- 1.5 A technical description of smooth surfaces in R -- Summary of Chapter 1 -- Chapter 2 Vector and tensor fields -- 2.1 Curves and functions on M -- 2.2 Tangent space, vectors and vector fields -- 2.3 Integral curves of a vector field -- 2.4 Linear algebra of tensors (multilinear algebra) -- 2.5 Tensor fields on M -- 2.6 Metric tensor on a manifold -- Summary of Chapter 2 -- Chapter 3 Mappings of tensors induced by mappings of manifolds -- 3.1 Mappings of tensors and tensor fields -- 3.2 Induced metric tensor -- Summary of Chapter 3 -- Chapter 4 Lie derivative -- 4.1 Local flow of a vector field -- 4.2 Lie transport and Lie derivative -- 4.3 Properties of the Lie derivative -- 4.4 Exponent of the Lie derivative -- 4.5 Geometrical interpretation of the commutator [V, W], non-holonomic frames -- 4.6 Isometries and conformal transformations, Killing equations -- Summary of Chapter 4 -- Chapter 5 Exterior algebra -- 5.1 Motivation: volumes of parallelepipeds -- 5.2 p-forms and exterior product -- 5.3 Exterior algebra Lambda L -- 5.4 Interior product iv -- 5.5 Orientation in L -- 5.6 Determinant and generalized Kronecker symbols -- 5.7 The metric volume form -- 5.8 Hodge (duality) operator -- Summary of Chapter 5 -- Chapter 6 Differential calculus of forms -- 6.1 Forms on a manifold -- 6.2 Exterior derivative -- 6.3 Orientability, Hodge operator and volume form on M -- 6.4 V-valued forms -- Summary of Chapter 6 -- Chapter 7 Integral calculus of forms -- 7.1 Quantities under the integral sign regarded as differential forms -- 7.2 Euclidean simplices and chains -- 7.3 Simplices and chains on a manifold -- 7.4 Integral of a form over a chain on a manifold -- 7.5 Stokes' theorem -- 7.6 Integral over a domain on an orientable manifold -- 7.7 Integral over a domain on an orientable Riemannian manifold -- 7.8 Integral and maps of manifolds -- Summary of Chapter 7 -- Chapter 8 Particular cases and applications of Stokes' theorem -- 8.1 Elementary situations -- 8.2 Divergence of a vector field and Gauss' theorem -- 8.3 Codifferential and Laplace-deRham operator -- 8.4 Green identities -- 8.5 Vector analysis in E -- 8.6 Functions of complex variables -- Summary of Chapter 8 -- Chapter 9 Poincaré lemma and cohomologies -- 9.1 Simple examples of closed non-exact forms -- 9.2 Construction of a potential on contractible manifolds -- 9.3 Cohomologies and deRham complex -- Summary of Chapter 9 -- Chapter 10 Lie groups: basic facts -- 10.1 Automorphisms of various structures and groups -- 10.2 Lie groups: basic concepts -- Summary of Chapter 10 -- Chapter 11 Differential geometry on Lie groups -- 11.1 Left-invariant tensor fields on a Lie group -- 11.2 Lie algebra G of a group G -- 11.3 One-parameter subgroups -- 11.4 Exponential map -- 11.5 Derived homomorphism of Lie algebras -- 11.6 Invariant integral on G -- 11.7 Matrix Lie groups: enjoy simplifications -- Summary of Chapter 11 -- Chapter 12 Representations of Lie groups and Lie algebras -- 12.1 Basic concept. 
520 |a Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Geometry, Differential. 
650 0 |a Lie groups. 
650 0 |a Mathematical physics. 
650 6 |a Géométrie différentielle. 
650 6 |a Groupes de Lie. 
650 6 |a Physique mathématique. 
650 7 |a SCIENCE  |x Physics  |x Mathematical & Computational.  |2 bisacsh 
650 7 |a Geometry, Differential  |2 fast 
650 7 |a Lie groups  |2 fast 
650 7 |a Mathematical physics  |2 fast 
776 0 8 |i Print version:  |a Fecko, Marián.  |t Differential geometry and lie groups for physicists.  |d Cambridge ; New York : Cambridge University Press, 2006  |z 9780521845076  |w (DLC) 2006299989  |w (OCoLC)69022184 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=304524  |z Texto completo 
887 |a ProductForm=DG  |2 onix 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13431632 
938 |a EBL - Ebook Library  |b EBLB  |n EBL274842 
938 |a ebrary  |b EBRY  |n ebr10150279 
938 |a EBSCOhost  |b EBSC  |n 304524 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 183647 
938 |a YBP Library Services  |b YANK  |n 2619927 
938 |a YBP Library Services  |b YANK  |n 3289329 
938 |a YBP Library Services  |b YANK  |n 2592481 
994 |a 92  |b IZTAP