An introduction to optical stellar interferometry /
This is the first book on optical stellar interferometry. It covers the history, theory and future uses of interferometeric techniques. It discusses ideas and instruments used in interferometry for advanced students in physics, optics, and astronomy with an interest in astronomical interferometry.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
2006.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title
- Copyright
- Contents
- Illustrations
- Preface
- Peter Nisenson, 1941-2004
- 1 Introduction
- 1.1 Historical introduction
- 1.2 About this book
- References
- 2 Basic concepts: a qualitative introduction
- 2.1 A qualitative introduction to the basic concepts and ideas
- 2.1.1 Young's experiment (1801-3)
- 2.1.2 Using Young's slits to measure the size of a light source
- 2.2 Some basic wave concepts
- 2.2.1 Plane waves
- 2.2.2 Huygens' principle: propagation of limited or distorted waves, and gravitational lensing
- 2.2.3 Superposition
- 2.3 Electromagnetic waves and photons
- References
- 3 Interference, diffraction and coherence
- 3.1 Interference and diffraction
- 3.1.1 Interference and interferometers
- 3.1.2 Diffraction using the scalar wave approximation
- 3.1.3 Fraunhofer diffraction patterns of some simple apertures
- 3.1.4 The point spread function
- 3.1.5 The optical transfer function
- 3.2 Coherent light
- 3.2.1 The effect of uncertainties in the frequency and wave vector
- 3.2.2 Coherent light and its importance to interferometry
- 3.2.3 Partial coherence
- 3.2.4 Spatial coherence
- 3.2.5 Temporal coherence
- 3.3 A quantitative discussion of coherence
- 3.3.1 Coherence function
- 3.3.2 The relationship between the coherence function and fringe visibility
- 3.3.3 Van Cittert-Zernike theorem
- 3.4 Fluctuations in light waves
- 3.4.1 A statistical model for quasimonochromatic light
- 3.4.2 Intensity correlation
- the second-order coherence function
- 3.4.3 Photon noise
- 3.4.4 Photodetectors
- References
- 4 Aperture synthesis
- 4.1 Aperture synthesis
- 4.1.1 The optics of aperture synthesis
- 4.1.2 Sampling the (u, v) plane
- 4.1.3 The optimal geometry of multiple telescope arrangements
- 4.2 From data to image: the phase problem
- 4.2.1 What can be done to measure phases? Phase closure
- 4.3 Image restoration and the crowding limitation
- 4.3.1 Algorithmic image restoration methods
- 4.3.2 The crowding limitation
- 4.4 Signal detection for aperture synthesis
- 4.4.1 Wave mixing and heterodyne recording
- 4.5 A quantum interpretation of aperture synthesis
- 4.6 A lecture demonstration of aperture synthesis
- References
- 5 Optical effects of the atmosphere
- 5.1 Introduction
- 5.2 A qualitative description of optical effects of the atmosphere
- 5.3 Quantitative measures of the atmospheric aberrations
- 5.3.1 Kolmogorov's (1941) description of turbulence
- 5.3.2 Parameters describing the optical effects of turbulence: Correlation and structure functions, B(r) and D(r).
- 5.4 Phase fluctuations in a wave propagating through the atmosphere
- 5.4.1 Fried's parameter r describes the size of the atmospheric correlation region
- 5.4.2 Correlation between phase fluctuations in waves with different angles of incidence: the isoplanatic patch
- 5.5 Temporal fluctuations
- 5.5.1 The wind-driven "frozen turbulence" hypothesis
- 5.5.2 Frequency spectrum of fluctuations
- 5.5.3 Intensity fluctuations: twinkling
- 5.6 A summary of the way the dependence of turbulence on height affects various optical parameters
- 5.7 Dependence of atmospheric effects on the wavelength
- 5.8 Adaptive optics
- 5.8.1 Measuring the wavefront distortion
- 5.8.2 Deformable mirrors
- 5.