Tabla de Contenidos:
  • Contents
  • 1. S-language
  • In the beginning
  • Three data typesâ€?and some input conventions
  • Reading values into SPLUS
  • S-toolsâ€?a beginning set
  • S-arithmetic
  • More S-toolsâ€?intermediate set
  • S-tools for statistics
  • Statistical distributions in SPLUS
  • Arrays and tables
  • Matrix algebra tools
  • Some additional S-tools
  • Four S-code examples
  • The .Data file
  • Addendum: Built-in editors
  • Problem set I
  • 2. Descriptive Techniques
  • Description of descriptive statistics
  • Basic statistical measures
  • Histogram smoothingâ€?density estimationStem-and-leaf display
  • Comparison of groupsâ€?t-test
  • Comparison of groupsâ€?boxplots
  • Comparison of data to a theoretical distributionâ€?quantile plots
  • Comparison of groupsâ€?qqplots
  • xy-plot
  • Three-dimensional plotsâ€?perspective plots
  • Three-dimensional plotsâ€?contour plots
  • Three-dimensional plotsâ€?rotation
  • Smoothing
  • Two-dimensional smoothing of spatial data
  • Clusters as a description of data
  • Additivityâ€?sweeping an array
  • Exampleâ€?geographic calculations using S-functions
  • Estimation of the center of a two-dimensional distributionAddendum: S-geometry
  • Problem set II
  • 3. Simulation: Random Values
  • Random uniform values
  • An example
  • Sampling without and with replacement
  • Random sample from a discrete probability distributionâ€?acceptance/rejection sampling
  • Random sample from a discrete probability distributionâ€?inverse transform method
  • Binomial probability distribution
  • Hypergeometric probability distribution
  • Poisson probability distribution
  • Geometric probability distribution
  • Random samples from a continuous distributionInverse transform method
  • Simulating values from the normal distribution
  • Four other statistical distributions
  • Simulating minimum and maximum values
  • Butler's method
  • Random values over a complex region
  • Multivariate normal variables
  • Problem set III
  • 4. General Linear Models
  • Simplest caseâ€?univariate linear regression
  • Multivariable case
  • Multivariable linear model
  • A closer look at residual values
  • Predictâ€?pointwise confidence intervals
  • Formulas for glm()
  • Polynomial regressionDiscriminant analysis
  • Linear logistic model
  • Categorical dataâ€?bivariate linear logistic model
  • Multivariable dataâ€?linear logistic model
  • Goodness-of-fit
  • Poisson model
  • Multivariable Poisson model
  • Problem set IV
  • 5. Estimation
  • Estimation: Maximum Likelihood
  • Estimator properties
  • Maximum likelihood estimator
  • Scoring to find maximum likelihood estimates
  • Multiparameter estimation
  • Generalized scoring
  • Estimation: Bootstrap
  • Background
  • General outline