Differential geometry applied to dynamical systems /
This book aims to present a new approach called flow curvature method that applies differential geometry to dynamical systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory -- or the flow -- may be an...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hackensack, N.J. :
World Scientific,
2009.
|
Colección: | World Scientific series on nonlinear science. Monographs and treatises ;
vol. 66. World Scientific series on nonlinear science. Monographs and treatises ; v. 66. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000Ia 4500 | ||
---|---|---|---|
001 | EBSCO_ocn593212992 | ||
003 | OCoLC | ||
005 | 20231017213018.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 100402s2009 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d MERUC |d YDXCP |d OSU |d EBLCP |d COCUF |d E7B |d IDEBK |d OCLCQ |d FVL |d OCLCQ |d UIU |d OCLCQ |d DEBSZ |d OCLCQ |d NLGGC |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d OCLCQ |d LOA |d AZK |d OCLCQ |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d JBG |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d ICG |d INT |d NRAMU |d VT2 |d AU@ |d OCLCQ |d WYU |d REC |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d UKCRE |d UIU |d OCLCO |d S2H |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 536309763 |a 614872597 |a 647853226 |a 669248803 |a 712987411 |a 722736530 |a 728058859 |a 960205191 |a 961487816 |a 962622059 |a 988518851 |a 991948174 |a 1037937181 |a 1038660835 |a 1045530917 |a 1064201190 |a 1081273792 |a 1153527891 |a 1228600965 |a 1289522829 | ||
020 | |a 9789814277150 |q (electronic bk.) | ||
020 | |a 9814277150 |q (electronic bk.) | ||
020 | |z 9789814277143 | ||
020 | |z 9814277142 | ||
029 | 1 | |a AU@ |b 000051543793 | |
029 | 1 | |a DEBBG |b BV043155316 | |
029 | 1 | |a DEBBG |b BV044141356 | |
029 | 1 | |a DEBSZ |b 372600743 | |
029 | 1 | |a DEBSZ |b 379312654 | |
029 | 1 | |a DEBSZ |b 421914130 | |
029 | 1 | |a DEBSZ |b 445567708 | |
029 | 1 | |a NZ1 |b 13340993 | |
035 | |a (OCoLC)593212992 |z (OCoLC)536309763 |z (OCoLC)614872597 |z (OCoLC)647853226 |z (OCoLC)669248803 |z (OCoLC)712987411 |z (OCoLC)722736530 |z (OCoLC)728058859 |z (OCoLC)960205191 |z (OCoLC)961487816 |z (OCoLC)962622059 |z (OCoLC)988518851 |z (OCoLC)991948174 |z (OCoLC)1037937181 |z (OCoLC)1038660835 |z (OCoLC)1045530917 |z (OCoLC)1064201190 |z (OCoLC)1081273792 |z (OCoLC)1153527891 |z (OCoLC)1228600965 |z (OCoLC)1289522829 | ||
050 | 4 | |a QA845 |b .G56 2009eb | |
072 | 7 | |a SCI |x 018000 |2 bisacsh | |
082 | 0 | 4 | |a 531.11 |2 22 |
049 | |a UAMI | ||
100 | 1 | |a Ginoux, Jean-Marc. | |
245 | 1 | 0 | |a Differential geometry applied to dynamical systems / |c Jean-Marc Ginoux. |
260 | |a Hackensack, N.J. : |b World Scientific, |c 2009. | ||
300 | |a 1 online resource (xxvii, 312 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a World scientific series on nonlinear science. Series A. ; |v vol. 66 | |
504 | |a Includes bibliographical references (pages 297-307) and index. | ||
520 | |a This book aims to present a new approach called flow curvature method that applies differential geometry to dynamical systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory -- or the flow -- may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence ... | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface; Acknowledgments; Contents; List of Figures; List of Examples; Dynamical Systems; 1. Differential Equations; 1.1 Galileo's pendulum; 1.2 D'Alembert transformation; 1.3 From differential equations to dynamical systems; 2. Dynamical Systems; 2.1 State space -- phase space; 2.2 Definition; 2.3 Existence and uniqueness; 2.4 Flow, fixed points and null-clines; 2.5 Stability theorems; 2.5.1 Linearized system; 2.5.2 Hartman-Grobman linearization theorem; 2.5.3 Liapouno. stability theorem; 2.6 Phase portraits of dynamical systems; 2.6.1 Two-dimensional systems; 2.6.2 Three-dimensional systems. | |
505 | 8 | |a 2.7 Various types of dynamical systems2.7.1 Linear and nonlinear dynamical systems; 2.7.2 Homogeneous dynamical systems; 2.7.3 Polynomial dynamical systems; 2.7.4 Singularly perturbed systems; 2.7.5 Slow-Fast dynamical systems; 2.8 Two-dimensional dynamical systems; 2.8.1 Poincare index; 2.8.2 Poincare contact theory; 2.8.3 Poincare limit cycle; 2.8.4 Poincare-Bendixson Theorem; 2.9 High-dimensional dynamical systems; 2.9.1 Attractors; 2.9.2 Strange attractors; 2.9.3 First integrals and Lie derivative; 2.10 Hamiltonian and integrable systems; 2.10.1 Hamiltonian dynamical systems. | |
505 | 8 | |a 2.10.2 Integrable system2.10.3 K.A.M. Theorem; 3. Invariant Sets; 3.1 Manifold; 3.1.1 Definition; 3.1.2 Existence; 3.2 Invariant sets; 3.2.1 Global invariance; 3.2.2 Local invariance; 4. Local Bifurcations; 4.1 CenterManifold Theorem; 4.1.1 Center manifold theorem for flows; 4.1.2 Center manifold approximation; 4.1.3 Center manifold depending upon a parameter; 4.2 Normal FormTheorem.; 4.3 Local Bifurcations of Codimension 1; 4.3.1 Saddle-node bifurcation; 4.3.2 Transcritical bifurcation; 4.3.3 Pitchfork bifurcation; 4.3.4 Hopf bifurcation; 5. Slow-Fast Dynamical Systems; 5.1 Introduction. | |
505 | 8 | |a 5.2 Geometric Singular Perturbation Theory5.2.1 Assumptions; 5.2.2 Invariance; 5.2.3 Slow invariant manifold; 5.3 Slow-fast dynamical systems -- Singularly perturbed systems; 5.3.1 Singularly perturbed systems; 5.3.2 Slow-fast autonomous dynamical systems; 6. Integrability; 6.1 Integrability conditions, integrating factor, multiplier; 6.1.1 Two-dimensional dynamical systems; 6.1.2 Three-dimensional dynamical systems; 6.2 First integrals -- Jacobi's last multiplier theorem; 6.2.1 First integrals; 6.2.2 Jacobi's last multiplier theorem; 6.3 Darboux theory of integrability. | |
505 | 8 | |a 6.3.1 Algebraic particular integral -- General integral6.3.2 General integral; 6.3.3 Multiplier; 6.3.4 Algebraic particular integral and fixed points; 6.3.5 Homogeneous polynomial dynamical systems of degree m; 6.3.6 Homogeneous polynomial dynamical systems of degree two; 6.3.7 Planar polynomial dynamical systems; Differential Geometry; 7. Differential Geometry; 7.1 Concept of curves -- Kinematics vector functions; 7.1.1 Trajectory curve; 7.1.2 Instantaneous velocity vector; 7.1.3 Instantaneous acceleration vector; 7.2 Gram-Schmidt process -- Generalized Fr ́enet moving frame. | |
590 | |a eBooks on EBSCOhost |b EBSCO eBook Subscription Academic Collection - Worldwide | ||
650 | 0 | |a Dynamics. | |
650 | 0 | |a Geometry, Differential. | |
650 | 6 | |a Dynamique. | |
650 | 6 | |a Géométrie différentielle. | |
650 | 7 | |a kinetics (dynamics) |2 aat | |
650 | 7 | |a SCIENCE |x Mechanics |x Dynamics. |2 bisacsh | |
650 | 7 | |a Dynamics |2 fast | |
650 | 7 | |a Geometry, Differential |2 fast | |
776 | 0 | 8 | |i Print version: |a Ginoux, Jean-Marc. |t Differential geometry applied to dynamical systems. |d Hackensack, N.J. : World Scientific, 2009 |z 9789814277143 |w (OCoLC)311763235 |
830 | 0 | |a World Scientific series on nonlinear science. |n Series A, |p Monographs and treatises ; |v vol. 66. | |
830 | 0 | |a World Scientific series on nonlinear science. |n Series A, |p Monographs and treatises ; |v v. 66. | |
856 | 4 | 0 | |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305321 |z Texto completo |
938 | |a Askews and Holts Library Services |b ASKH |n AH24686361 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL477153 | ||
938 | |a ebrary |b EBRY |n ebr10361897 | ||
938 | |a EBSCOhost |b EBSC |n 305321 | ||
938 | |a YBP Library Services |b YANK |n 3161757 | ||
994 | |a 92 |b IZTAP |