Cargando…

Differential geometry applied to dynamical systems /

This book aims to present a new approach called flow curvature method that applies differential geometry to dynamical systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory -- or the flow -- may be an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ginoux, Jean-Marc
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, N.J. : World Scientific, 2009.
Colección:World Scientific series on nonlinear science. Monographs and treatises ; vol. 66.
World Scientific series on nonlinear science. Monographs and treatises ; v. 66.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn593212992
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 100402s2009 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d MERUC  |d YDXCP  |d OSU  |d EBLCP  |d COCUF  |d E7B  |d IDEBK  |d OCLCQ  |d FVL  |d OCLCQ  |d UIU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d NLGGC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d AZK  |d OCLCQ  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d JBG  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d NRAMU  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d REC  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d UKCRE  |d UIU  |d OCLCO  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 536309763  |a 614872597  |a 647853226  |a 669248803  |a 712987411  |a 722736530  |a 728058859  |a 960205191  |a 961487816  |a 962622059  |a 988518851  |a 991948174  |a 1037937181  |a 1038660835  |a 1045530917  |a 1064201190  |a 1081273792  |a 1153527891  |a 1228600965  |a 1289522829 
020 |a 9789814277150  |q (electronic bk.) 
020 |a 9814277150  |q (electronic bk.) 
020 |z 9789814277143 
020 |z 9814277142 
029 1 |a AU@  |b 000051543793 
029 1 |a DEBBG  |b BV043155316 
029 1 |a DEBBG  |b BV044141356 
029 1 |a DEBSZ  |b 372600743 
029 1 |a DEBSZ  |b 379312654 
029 1 |a DEBSZ  |b 421914130 
029 1 |a DEBSZ  |b 445567708 
029 1 |a NZ1  |b 13340993 
035 |a (OCoLC)593212992  |z (OCoLC)536309763  |z (OCoLC)614872597  |z (OCoLC)647853226  |z (OCoLC)669248803  |z (OCoLC)712987411  |z (OCoLC)722736530  |z (OCoLC)728058859  |z (OCoLC)960205191  |z (OCoLC)961487816  |z (OCoLC)962622059  |z (OCoLC)988518851  |z (OCoLC)991948174  |z (OCoLC)1037937181  |z (OCoLC)1038660835  |z (OCoLC)1045530917  |z (OCoLC)1064201190  |z (OCoLC)1081273792  |z (OCoLC)1153527891  |z (OCoLC)1228600965  |z (OCoLC)1289522829 
050 4 |a QA845  |b .G56 2009eb 
072 7 |a SCI  |x 018000  |2 bisacsh 
082 0 4 |a 531.11  |2 22 
049 |a UAMI 
100 1 |a Ginoux, Jean-Marc. 
245 1 0 |a Differential geometry applied to dynamical systems /  |c Jean-Marc Ginoux. 
260 |a Hackensack, N.J. :  |b World Scientific,  |c 2009. 
300 |a 1 online resource (xxvii, 312 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a World scientific series on nonlinear science. Series A. ;  |v vol. 66 
504 |a Includes bibliographical references (pages 297-307) and index. 
520 |a This book aims to present a new approach called flow curvature method that applies differential geometry to dynamical systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory -- or the flow -- may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence ... 
588 0 |a Print version record. 
505 0 |a Preface; Acknowledgments; Contents; List of Figures; List of Examples; Dynamical Systems; 1. Differential Equations; 1.1 Galileo's pendulum; 1.2 D'Alembert transformation; 1.3 From differential equations to dynamical systems; 2. Dynamical Systems; 2.1 State space -- phase space; 2.2 Definition; 2.3 Existence and uniqueness; 2.4 Flow, fixed points and null-clines; 2.5 Stability theorems; 2.5.1 Linearized system; 2.5.2 Hartman-Grobman linearization theorem; 2.5.3 Liapouno. stability theorem; 2.6 Phase portraits of dynamical systems; 2.6.1 Two-dimensional systems; 2.6.2 Three-dimensional systems. 
505 8 |a 2.7 Various types of dynamical systems2.7.1 Linear and nonlinear dynamical systems; 2.7.2 Homogeneous dynamical systems; 2.7.3 Polynomial dynamical systems; 2.7.4 Singularly perturbed systems; 2.7.5 Slow-Fast dynamical systems; 2.8 Two-dimensional dynamical systems; 2.8.1 Poincare index; 2.8.2 Poincare contact theory; 2.8.3 Poincare limit cycle; 2.8.4 Poincare-Bendixson Theorem; 2.9 High-dimensional dynamical systems; 2.9.1 Attractors; 2.9.2 Strange attractors; 2.9.3 First integrals and Lie derivative; 2.10 Hamiltonian and integrable systems; 2.10.1 Hamiltonian dynamical systems. 
505 8 |a 2.10.2 Integrable system2.10.3 K.A.M. Theorem; 3. Invariant Sets; 3.1 Manifold; 3.1.1 Definition; 3.1.2 Existence; 3.2 Invariant sets; 3.2.1 Global invariance; 3.2.2 Local invariance; 4. Local Bifurcations; 4.1 CenterManifold Theorem; 4.1.1 Center manifold theorem for flows; 4.1.2 Center manifold approximation; 4.1.3 Center manifold depending upon a parameter; 4.2 Normal FormTheorem.; 4.3 Local Bifurcations of Codimension 1; 4.3.1 Saddle-node bifurcation; 4.3.2 Transcritical bifurcation; 4.3.3 Pitchfork bifurcation; 4.3.4 Hopf bifurcation; 5. Slow-Fast Dynamical Systems; 5.1 Introduction. 
505 8 |a 5.2 Geometric Singular Perturbation Theory5.2.1 Assumptions; 5.2.2 Invariance; 5.2.3 Slow invariant manifold; 5.3 Slow-fast dynamical systems -- Singularly perturbed systems; 5.3.1 Singularly perturbed systems; 5.3.2 Slow-fast autonomous dynamical systems; 6. Integrability; 6.1 Integrability conditions, integrating factor, multiplier; 6.1.1 Two-dimensional dynamical systems; 6.1.2 Three-dimensional dynamical systems; 6.2 First integrals -- Jacobi's last multiplier theorem; 6.2.1 First integrals; 6.2.2 Jacobi's last multiplier theorem; 6.3 Darboux theory of integrability. 
505 8 |a 6.3.1 Algebraic particular integral -- General integral6.3.2 General integral; 6.3.3 Multiplier; 6.3.4 Algebraic particular integral and fixed points; 6.3.5 Homogeneous polynomial dynamical systems of degree m; 6.3.6 Homogeneous polynomial dynamical systems of degree two; 6.3.7 Planar polynomial dynamical systems; Differential Geometry; 7. Differential Geometry; 7.1 Concept of curves -- Kinematics vector functions; 7.1.1 Trajectory curve; 7.1.2 Instantaneous velocity vector; 7.1.3 Instantaneous acceleration vector; 7.2 Gram-Schmidt process -- Generalized Fr ́enet moving frame. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Dynamics. 
650 0 |a Geometry, Differential. 
650 6 |a Dynamique. 
650 6 |a Géométrie différentielle. 
650 7 |a kinetics (dynamics)  |2 aat 
650 7 |a SCIENCE  |x Mechanics  |x Dynamics.  |2 bisacsh 
650 7 |a Dynamics  |2 fast 
650 7 |a Geometry, Differential  |2 fast 
776 0 8 |i Print version:  |a Ginoux, Jean-Marc.  |t Differential geometry applied to dynamical systems.  |d Hackensack, N.J. : World Scientific, 2009  |z 9789814277143  |w (OCoLC)311763235 
830 0 |a World Scientific series on nonlinear science.  |n Series A,  |p Monographs and treatises ;  |v vol. 66. 
830 0 |a World Scientific series on nonlinear science.  |n Series A,  |p Monographs and treatises ;  |v v. 66. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305321  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686361 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL477153 
938 |a ebrary  |b EBRY  |n ebr10361897 
938 |a EBSCOhost  |b EBSC  |n 305321 
938 |a YBP Library Services  |b YANK  |n 3161757 
994 |a 92  |b IZTAP