Combustion physics /
This is a graduate-level text on the fundamentals of chemically reacting flows, intended for students and researchers in a variety of applied sciences and engineering. It is especially relevant to work in heat and power generation, burners and internal combustion engines, energy conservation, aero-p...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
2006.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title
- Copyright
- Contents
- Preface
- Contents
- Dedication
- Preface
- Introduction
- 0.1. MAJOR AREAS OF COMBUSTION APPLICATION
- 0.2. SCIENTIFIC DISCIPLINES COMPRISING COMBUSTION
- 0.3. CLASSIFICATIONS OF FUNDAMENTAL COMBUSTION PHENOMENA
- 0.4. ORGANIZATION OF THE TEXT
- 0.5. LITERATURE SOURCES
- Introductory Texts
- Intermediate Texts
- Advanced Texts
- Specialized Texts and Monographs
- Journals
- 1 Chemical Thermodynamics
- 1.1. PRACTICAL REACTANTS AND STOICHIOMETRY
- 1.1.1. Practical Reactants
- 1.1.2. Stoichiometry
- 1.2. CHEMICAL EQUILIBRIUM
- 1.2.1. First and Second Laws
- 1.2.2. Thermodynamic Functions
- 1.2.3. Criterion for Chemical Equilibrium
- 1.2.4. Phase Equilibrium
- 1.2.5. Equilibrium Constants
- 1.2.6. Equilibrium Constants in the Presence of Condensed Phases
- 1.2.7. Multiple Reactions
- 1.2.8. Element Conservation
- 1.2.9. Restricted Equilibrium
- 1.3. EQUILIBRIUM COMPOSITION CALCULATIONS
- 1.3.1. Equilibrium Composition of Hydrocarbon-Air Mixtures
- 1.3.2. The Major-Minor Species Model
- 1.3.3. Computer Solutions
- 1.4. ENERGY CONSERVATION
- 1.4.1. Heats of Formation, Reaction, and Combustion
- 1.4.2. Estimation of Heat of Reaction from Bond Energies
- 1.4.3. Determination of Heat of Reaction from Kp(T)
- 1.4.4. Sensible Energies and Heat Capacities
- 1.4.5. Energy Conservation in Adiabatic Chemical Systems
- 1.4.6. Adiabatic Flame Temperature and Equilibrium Composition
- 2 Chemical Kinetics
- 2.1. PHENOMENOLOGICAL LAW OF REACTION RATES
- 2.1.1. The Law of Mass Action
- 2.1.2. Reversible Reactions
- 2.1.3. Multistep Reactions
- 2.1.4. Steady-State Approximation
- 2.1.5. Partial Equilibrium Approximation
- 2.1.6. Approximations by Global and Semiglobal Reactions
- 2.1.7. Reaction Order and Molecularity
- 2.2. THEORIES OF REACTION RATES: BASIC CONCEPTS
- 2.2.1. The Arrhenius Law
- 2.2.2. The Activation Energy
- 2.2.3. Collision Theory of Reaction Rates
- 2.2.4. Transition State Theory of Reaction Rates
- 2.3. THEORIES OF REACTION RATES: UNIMOLECULAR REACTIONS
- 2.3.1. Lindemann Theory
- 2.3.2. Rice-Ramsperger-Kassel (RRK) Theory
- 2.3.3. Representation of Unimolecular Reaction Rate Constants
- 2.3.4. Chemically Activated Reactions
- 2.4. CHAIN REACTION MECHANISMS
- 2.4.1. Halogen SystemStraight-ChainReactions:TheHydrogen-
- 2.4.2. Branched-Chain Reactions
- 2.4.3. Flame Inhibitors
- 2.5. EXPERIMENTAL AND COMPUTATIONAL TECHNIQUES
- 3 Oxidation Mechanisms of Fuels
- 3.1. PRACTICAL FUELS
- 3.2. OXIDATION OF HYDROGEN AND CARBON MONOXIDE
- 3.2.1. Explosion Limits of Hydrogen-Oxygen Mixtures
- 3.2.2. Carbon Monoxide Oxidation
- 3.2.3. Initiation Reactions in Flames
- 3.3. OXIDATION OF METHANE
- 3.3.1. General Considerations of Hydrocarbon Oxidation
- 3.3.2. Methane Autoignition
- 3.3.3. Methane Flames
- 3.4. OXIDATION OF C2 HYDROCARBONS
- 3.5. OXIDATION OF ALCOHOLS
- 3.6. HIGH-TEMPERATURE OXIDATION OF HIGHER ALIPHATIC FUELS
- 3.6.1. The [beta]-Scission Rule
- 3.6.2. Oxidation Mechanisms
- 3.7. OXIDATION OF AROMATICS
- 3.8. HYDROCARBON OXIDATION AT LOW TO INTERMEDIATE TEMPERATURES
- 3.9. CHEMISTRY OF POLLUTANT FORMATION
- 3.9.1. Oxides of Nitrogen
- 3.9.2. Soot Formation
- 3.10.