Cargando…

Invariant algebras and geometric reasoning /

The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and geometric algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Li, Hongbo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singarore ; Hackensack, N.J. : World Scientific, ©2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn560635800
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 080609s2008 si a ob 001 0 eng d
010 |z  2008297934 
040 |a MERUC  |b eng  |e pn  |c MERUC  |d CCO  |d E7B  |d OCLCQ  |d QE2  |d N$T  |d CDX  |d IDEBK  |d OCLCQ  |d M6U  |d OCLCQ  |d OCLCF  |d OCLCO  |d OCLCQ  |d YDXCP  |d MHW  |d EBLCP  |d DEBSZ  |d STF  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFPO  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d AU@  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d HS0  |d UKCRE  |d VLY  |d AJS  |d DST  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 262552027  |a 313650570  |a 471131739  |a 646768166  |a 696629451  |a 815749888  |a 879025485  |a 961533255  |a 962630481  |a 988406682  |a 992052192  |a 1037786189  |a 1038670952  |a 1045472678  |a 1055379123  |a 1057993002  |a 1064766183  |a 1081293818  |a 1086500028  |a 1153509137  |a 1162570804  |a 1227633244  |a 1228557524  |a 1290067303  |a 1300465037  |a 1303345236  |a 1303513956 
020 |a 9789812770110  |q (electronic bk.) 
020 |a 9812770119  |q (electronic bk.) 
020 |a 1281919004 
020 |a 9781281919007 
020 |z 9789812708083 
020 |z 9812708081 
020 |a 9786611919009 
020 |a 6611919007 
029 1 |a AU@  |b 000051374468 
029 1 |a CDX  |b 9460131 
029 1 |a DEBBG  |b BV043126650 
029 1 |a DEBBG  |b BV044179564 
029 1 |a DEBSZ  |b 405248687 
029 1 |a DEBSZ  |b 422095168 
029 1 |a DEBSZ  |b 445555122 
029 1 |a GBVCP  |b 803089252 
029 1 |a NZ1  |b 14241032 
035 |a (OCoLC)560635800  |z (OCoLC)262552027  |z (OCoLC)313650570  |z (OCoLC)471131739  |z (OCoLC)646768166  |z (OCoLC)696629451  |z (OCoLC)815749888  |z (OCoLC)879025485  |z (OCoLC)961533255  |z (OCoLC)962630481  |z (OCoLC)988406682  |z (OCoLC)992052192  |z (OCoLC)1037786189  |z (OCoLC)1038670952  |z (OCoLC)1045472678  |z (OCoLC)1055379123  |z (OCoLC)1057993002  |z (OCoLC)1064766183  |z (OCoLC)1081293818  |z (OCoLC)1086500028  |z (OCoLC)1153509137  |z (OCoLC)1162570804  |z (OCoLC)1227633244  |z (OCoLC)1228557524  |z (OCoLC)1290067303  |z (OCoLC)1300465037  |z (OCoLC)1303345236  |z (OCoLC)1303513956 
050 4 |a QA199  |b .L53 2008eb 
072 7 |a MAT  |x 002050  |2 bisacsh 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT  |2 eflch 
072 0 |a PBF 
072 0 |a PBM 
072 |a PBF 
072 |a PBM 
082 0 4 |a 512/.57  |2 22 
049 |a UAMI 
100 1 |a Li, Hongbo. 
245 1 0 |a Invariant algebras and geometric reasoning /  |c Hongbo Li. 
260 |a Singarore ;  |a Hackensack, N.J. :  |b World Scientific,  |c ©2008. 
300 |a 1 online resource (xiv, 518 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 495-504) and index. 
588 0 |a Print version record. 
520 |a The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and geometric algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author's most recent, original development of Grassmann-Cayley algebra and geometric algebra and their applications in automated reasoning of classical geometries. It includes three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide. 
505 0 |a 1. Introduction. 1.1. Leibniz's dream. 1.2. Development of geometric algebras. 1.3. Conformal geometric algebra. 1.4. Geometric computing with invariant algebras. 1.5. From basic invariants to advanced invariants. 1.6. Geometric reasoning with advanced invariant algebras. 1.7. Highlights of the chapters -- 2. Projective space, bracket algebra and Grassmann-Cayley algebra. 2.1. Projective space and classical invariants. 2.2. Brackets from the symbolic point of view. 2.3. Covariants, duality and Grassmann-Cayley algebra. 2.4. Grassmann coalgebra. 2.5. Cayley expansion. 2.6. Grassmann factorization. 2.7. Advanced invariants and Cayley bracket algebra -- 3. Projective incidence geometry with Cayley bracket algebra. 3.1. Symbolic methods for projective incidence geometry. 3.2. Factorization techniques in bracket algebra. 3.3. Contraction techniques in bracket computing. 3.4. Exact division and pseudodivision. 3.5. Rational invariants. 3.6. Automated theorem proving. 3.7. Erdös' consistent 5-tuples -- 4. Projective conic geometry with bracket algebra and quadratic Grassmann-Cayley algebra. 4.1. Conics with bracket algebra, 4.2. Bracket-oriented representation. 4.3. Simplification techniques in conic computing. 4.4. Factorization techniques in conic computing. 4.5. Automated theorem proving. 4.6. Conics with quadratic Grassmann-Cayley algebra -- 5. Inner-product bracket algebra and Clifford algebra. 5.1. Inner-product bracket algebra. 5.2. Clifford algebra. 5.3. Representations of Clifford algebras. 5.4. Clifford expansion theory -- 6. Geometric algebra. 6.1. Major techniques in geometric algebra. 6.2. Versor compression. 6.3. Obstructions to versor compression. 6.4. Clifford coalgebra, Clifford summation and factorization. 6.5. Clifford bracket algebra -- 7. Euclidean geometry and conformal Grassmann-Cayley algebra. 7.1. Homogeneous coordinates and Cartesian coordinates. 7.2. The conformal model and the homogeneous model. 7.3. Positive-vector representations of spheres and hyperplanes. 7.4. Conformal Grassmann-Cayley algebra. 7.5. The Lie model of oriented spheres and hyperplanes. 7.6. Apollonian contact problem -- 8. Conformal Clifford algebra and classical geometries. 8.1. The geometry of positive monomials. 8.2. Cayley transform and exterior exponential. 8.3. Twisted Vahlen matrices and Vahlen matrices. 8.4. Affine geometry with dual Clifford algebra. 8.5. Spherical geometry and its conformal model. 8.6. Hyperbolic geometry and its conformal model. 8.7. Unifed algebraic framework for classical geometries. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Clifford algebras. 
650 0 |a Invariants. 
650 0 |a Symmetry (Mathematics) 
650 6 |a Algèbres de Clifford. 
650 6 |a Invariants. 
650 6 |a Symétrie (Mathématiques) 
650 7 |a MATHEMATICS  |x Algebra  |x Linear.  |2 bisacsh 
650 7 |a Mathematics.  |2 eflch 
650 7 |a Clifford algebras  |2 fast 
650 7 |a Invariants  |2 fast 
650 7 |a Symmetry (Mathematics)  |2 fast 
776 0 8 |i Print version:  |a Li, Hongbo.  |t Invariant algebras and geometric reasoning.  |d Singarore ; Hackensack, N.J. : World Scientific, ©2008  |w (DLC) 2008297934 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236092  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684228 
938 |a Coutts Information Services  |b COUT  |n 9460131 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681616 
938 |a ebrary  |b EBRY  |n ebr10255404 
938 |a EBSCOhost  |b EBSC  |n 236092 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 191900 
938 |a YBP Library Services  |b YANK  |n 2891929 
994 |a 92  |b IZTAP