Automorphic representations of low rank groups /
The area of automorphic representations is a natural continuation of studies in number theory and modular forms. A guiding principle is a reciprocity law relating the infinite dimensional automorphic representations with finite dimensional Galois representations. Simple relations on the Galois side...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hackensack, N.J. :
World Scientific,
©2006.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- CONTENTS
- PREFACE
- PART 1. ON THE SYMMETRIC SQUARE LIFTING
- INTRODUCTION
- I. FUNCTORIALITY AND NORMS
- I.1 Hecke algebra
- I.2 Norms
- I.3 Local lifting
- I.4 Orthogonality
- II. ORBITAL INTEGRALS
- II. 1 Fundamental lemma
- II. 2 Differential forms
- II. 3 Matching orbital integrals
- II. 4 Germ expansion
- III. TWISTED TRACE FORMULA
- III. 1 Geometric side
- III. 2 Analytic side
- III. 3 Trace formulae
- IV. TOTAL GLOBAL COMPARISON
- IV. 1 The comparison
- IV. 2 Appendix: Mathematica program
- V. APPLICATIONS OF A TRACE FORMULA
- V.1 Approximation
- V.2 Main theorems
- V.3 Characters and genericity
- VI. COMPUTATION OF A TWISTED CHARACTER
- VI. 1 Proof of theorem, anisotropic case 13;
- VI. 2 Proof of theorem, isotropic case
- PART 2. AUTOMORPHIC REPRESENTATIONS OF THE UNITARY GROUP U(3,E/F)13;
- INTRODUCTION
- 1. Functorial overview
- 2. Statement of results
- I. LOCAL THEORY
- I.1 Conjugacy classes
- I.2 Orbital integrals
- I.3 Fundamental lemma
- I.4 Admissible representations
- I.5 Representations of U(2,1;C/R)
- I.6 Fundamental lemma again.