Statistical tables, explained and applied /
This book contains several new or unpublished tables, such as one on the significance of the correlation coefficient [symbol], one giving the percentiles of [symbol] statistic for monotonic variation (with two structural models of variation), an extensive table for the number-of-runs test, three tab...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Francés |
Publicado: |
River Edge, N.J. :
World Scientific,
©2002.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Introduction. Common abbreviations and notations
- Normal distribution
- Chi-square (x[symbol) distribution
- Student's t distribution with Dunn-Šidák's t and significance table for r
- F distribution
- Studentized range (q) distribution
- Dunnett's t distribution
- [symbol][symbol] (monotonic variation) distribution
- F[symbol] distribution
- Cochran's C distribution
- Orthogonal polynomials
- Binomial distribution
- Number-of-runs distribution
- Random numbers
- Supplementary examples
- Mathematical complement. Beta [Beta distribution [symbol][symbol](a, b), Beta function B(a, b)]
- Binomial expansion
- Combinations, C(m, n) or ([symbol])
- Correlation coefficient, [symbol]xy, [symbol]xy
- Distribution function, P(x)
- Expectation (of a random variable), [symbol] or E(X)
- Exponential distribution, E([symbol])
- Factorial (function), n!
- Factorial (ascending n[symbol], descending n[symbol])
- Gamma [Gamma distribution G[symbol](x), Gamma function [symbol] (x))]
- Integration (analytic, direct)
- Integration (numerical)
- Interpolation (linear, harmonic)
- Mean (of a random variable), [symbol] or E(X), [symbol]
- Moments of a distribution [[symbol], [symbol], [symbol], [symbol]]
- Moment estimates [[symbol], s[symbol], g[symbol], g[symbol]]
- Poisson distribution, Po([symbol][symbol])
- Probability density function, p(x)
- Probability distribution function, P(x)
- Simpson's (parabolic) rule
- Standard deviation (of a random variable), [symbol], s
- Uniform distribution, U(a, b) and [symbol](0,1)
- Variance (of a random variable), [symbol][symbol] or var(X), s[symbol].