Cargando…

Introductory algebraic number theory /

An introduction to algebraic number theory for senior undergraduates and beginning graduate students in mathematics. It includes numerous examples, and references to further reading and to biographies of mathematicians who have contributed to the development of the subject. Includes over 320 exercis...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Alaca, Şaban, 1964-
Otros Autores: Williams, Kenneth S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2004.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn560115628
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 030415s2004 enk ob 001 0 eng d
040 |a MERUC  |b eng  |e pn  |c MERUC  |d CCO  |d E7B  |d OCLCQ  |d N$T  |d YDXCP  |d COCUF  |d OQP  |d CUY  |d DKDLA  |d OCLCQ  |d CAMBR  |d OCLCO  |d OCLCF  |d DEBSZ  |d IDEBK  |d OCLCQ  |d EBLCP  |d OCLCQ  |d AZK  |d CNNLC  |d CNNOR  |d MOR  |d PIFBR  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d COO  |d STF  |d BRL  |d OCLCO  |d WRM  |d NRAMU  |d CRU  |d ICG  |d VTS  |d OCLCQ  |d MOQ  |d INT  |d VT2  |d AU@  |d OCLCQ  |d G3B  |d TKN  |d OCLCQ  |d DKC  |d SNK  |d OCLCQ  |d VLY  |d UKAHL  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 70854872  |a 144525548  |a 171123691  |a 171138261  |a 437165582  |a 439702745  |a 466466193  |a 481790052  |a 647485063  |a 667039889  |a 817928232  |a 961586229  |a 962658353  |a 1037518231  |a 1109183564  |a 1117902373  |a 1162005742  |a 1241858515  |a 1259149419 
020 |a 0511166095  |q (electronic bk.) 
020 |a 9780511166099  |q (electronic bk.) 
020 |a 9780511164149 
020 |a 0511164149 
020 |a 9780521832502  |q (hc) 
020 |a 0521832500  |q (hc) 
020 |a 9780521540117  |q (pbk.) 
020 |a 0521540119  |q (pbk.) 
020 |a 9780511791260  |q (electronic bk.) 
020 |a 0511791267  |q (electronic bk.) 
020 |a 9780511164941  |q (electronic bk.) 
020 |a 0511164947  |q (electronic bk.) 
020 |z 0511164149 
020 |z 0521832500  |q (hc) 
020 |z 0521540119  |q (pbk.) 
020 |a 1107148855 
020 |a 9781107148857 
020 |a 0511566808 
020 |a 9780511566806 
029 1 |a AU@  |b 000053018418 
029 1 |a AU@  |b 000062562552 
029 1 |a DEBBG  |b BV044083283 
029 1 |a DEBSZ  |b 379295245 
029 1 |a DEBSZ  |b 44556007X 
029 1 |a NZ1  |b 12041686 
029 1 |a DKDLA  |b 820120-katalog:999925528705765 
035 |a (OCoLC)560115628  |z (OCoLC)70854872  |z (OCoLC)144525548  |z (OCoLC)171123691  |z (OCoLC)171138261  |z (OCoLC)437165582  |z (OCoLC)439702745  |z (OCoLC)466466193  |z (OCoLC)481790052  |z (OCoLC)647485063  |z (OCoLC)667039889  |z (OCoLC)817928232  |z (OCoLC)961586229  |z (OCoLC)962658353  |z (OCoLC)1037518231  |z (OCoLC)1109183564  |z (OCoLC)1117902373  |z (OCoLC)1162005742  |z (OCoLC)1241858515  |z (OCoLC)1259149419 
050 4 |a QA247  |b .A43 2004eb 
072 7 |a MAT  |x 022000  |2 bisacsh 
082 0 4 |a 512/.74  |2 21 
084 |a SK 180  |2 rvk 
049 |a UAMI 
100 1 |a Alaca, Şaban,  |d 1964- 
245 1 0 |a Introductory algebraic number theory /  |c Şaban Alaca, Kenneth S. Williams. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2004. 
300 |a 1 online resource (xvii, 428 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references (pages 423-424) and index. 
505 0 |6 880-01  |a Integral domains -- Euclidean domains -- Noetherian domains -- Elements integral over a domain -- Algebraic extensions of a field -- Algebraic number fields -- Integral bases -- Dedekind domains -- Norms of ideals -- Decomposing primes in a number field -- Units in real quadratic fields -- The ideal class group -- Dirichlet's unit theorem -- Applications to diophantine equations. 
588 0 |a Print version record. 
520 |a An introduction to algebraic number theory for senior undergraduates and beginning graduate students in mathematics. It includes numerous examples, and references to further reading and to biographies of mathematicians who have contributed to the development of the subject. Includes over 320 exercises, and an extensive index. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Algebraic number theory. 
650 0 |a Number theory. 
650 6 |a Théorie algébrique des nombres. 
650 6 |a Théorie des nombres. 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a Algebraic number theory.  |2 fast  |0 (OCoLC)fst00804937 
650 7 |a Number theory.  |2 fast  |0 (OCoLC)fst01041214 
650 7 |a Algebraische Zahlentheorie  |2 gnd 
650 7 |a Teoria dos números.  |2 larpcal 
650 7 |a Números algébricos.  |2 larpcal 
650 7 |a Nombres algébriques, Théorie des.  |2 ram 
655 7 |a Einführung.  |2 swd 
700 1 |a Williams, Kenneth S. 
776 0 8 |i Print version:  |a Alaca, Şaban, 1964-  |t Introductory algebraic number theory.  |d Cambridge ; New York : Cambridge University Press, 2004  |w (DLC) 2003051243 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=165080  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |t 1.1 Integral Domains --  |t 1.2 Irreducibles and Primes --  |t 1.3 Ideals --  |t 1.4 Principal Ideal Domains --  |t 1.5 Maximal Ideals and Prime Ideals --  |t 1.6 Sums and Products of Ideals --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 2.1 Euclidean Domains --  |t 2.2 Examples of Euclidean Domains --  |t 2.3 Examples of Domains That are Not Euclidean --  |t 2.4 Almost Euclidean Domains --  |t 2.5 Representing Primes by Binary Quadratic Forms --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 3.1 Noetherian Domains --  |t 3.2 Factorization Domains --  |t 3.3 Unique Factorization Domains --  |t 3.4 Modules --  |t 3.5 Noetherian Modules --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 4.1 Elements Integral over a Domain --  |t 4.2 Integral Closure --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 5.1 Minimal Polynomial of an Element Algebraic over a Field --  |t 5.2 Conjugates of α over --  |t 5.3 Conjugates of an Algebraic Integer --  |t 5.4 Algebraic Integers in a Quadratic Field --  |t 5.5 Simple Extensions --  |t 5.6 Multiple Extensions --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 6.1 Algebraic Number Fields --  |t 6.2 Conjugate Fields of an Algebraic Number Field --  |t 6.3 The Field Polynomial of an Element of an Algebraic Number Field --  |t 6.4 The Discriminant of a set of Elements in an Algebraic Number Field --  |t 6.5 Basis of an Ideal --  |t 6.6 Prime Ideals in Rings of Integers --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 7.1 Integral Basis of an Algebraic Number Field --  |t 7.2 Minimal Integers --  |t 7.3 Some Integral Bases in Cubic Fields --  |t 7.4 Index and Minimal Index of an Algebraic Number Field --  |t 7.5 Integral Basis of a Cyclotomic Field --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 8.1 Dedekind Domains --  |t 8.2 Ideals in a Dedekind Domain --  |t 8.3 Factorization into Prime Ideals --  |t 8.4 Order of an Ideal with Respect to a Prime Ideal --  |t 8.5 Generators of Ideals in a Dedekind Domain --  |t Exercises --  |t Suggested Reading --  |t 9.1 Norm of an Integral Ideal --  |t 9.2 Norm and Trace of an Element --  |t 9.3 Norm of a Product of Ideals --  |t 9.4 Norm of a Fractional Ideal --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 10.1 Norm of a Prime Ideal --  |t 10.2 Factoring Primes in a Quadratic Field --  |t 10.3 Factoring Primes in a Monogenic Number Field --  |t 10.4 Some Factorizations in Cubic Fields --  |t 10.5 Factoring Primes in an Arbitrary Number Field --  |t 10.6 Factoring Primes in a Cyclotomic Field --  |t Exercises --  |t Suggested Reading --  |t 11.1 The Units of Z+Z/2 --  |t 11.2 The Equation x2-y2=1 --  |t 11.3 Units of Norm 1 --  |t 11.4 Units of Norm -1 --  |t 11.5 The Fundamental Unit --  |t 11.6 Calculating the Fundamental Unit --  |t 11.7 The Equation x2-my2=N --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 12.1 Ideal Class Group --  |t 12.2 Minkowski's Translate Theorem --  |t 12.3 Minkowski's Convex Body Theorem --  |t 12.4 Minkowski's Linear Forms Theorem --  |t 12.5 Finiteness of the Ideal Class Group --  |t 12.6 Algorithm to Determine the Ideal Class Group --  |t 12.7 Applications to Binary Quadratic Forms --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 13.1 Valuations of an Element of a Number Field --  |t 13.2 Properties of Valuations --  |t 13.3 Proof of Dirichlet's Unit Theorem --  |t 13.4 Fundamental System of Units --  |t 13.5 Roots of Unity --  |t 13.6 Fundamental Units in Cubic Fields --  |t 13.7 Regulator --  |t Exercises --  |t Suggested Reading --  |t Biographies --  |t 14.1 Insolvability of y2=x3+k Using Congruence Considerations --  |t 14.2 Solving y2=x3+k Using Algebraic Numbers --  |t 14.3 The Diophantine Equation y(y+1)=x(x+1)(x+2) --  |t Exercises --  |t Suggested Reading --  |t Biographies. 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH3974656 
938 |a EBL - Ebook Library  |b EBLB  |n EBL257606 
938 |a ebrary  |b EBRY  |n ebr10120486 
938 |a EBSCOhost  |b EBSC  |n 165080 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 239466 
938 |a YBP Library Services  |b YANK  |n 2619219 
938 |a YBP Library Services  |b YANK  |n 3584258 
938 |a YBP Library Services  |b YANK  |n 2591790 
938 |a YBP Library Services  |b YANK  |n 2462668 
994 |a 92  |b IZTAP