Special design topics in digital wideband receivers /
Offering engineers a thorough examination of special, more advanced aspects of digital wideband receiver design, this practical book builds on fundamental resources on the topic, helping professionals gain a more comprehensive understanding of the subject. This in-depth volume presents a detailed lo...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boston, Mass. ; London :
Artech House,
2010.
|
Colección: | Artech House radar library.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Special Design Topics in Digital Wideband Receivers; Contents; Preface; Chapter 1 Introduction; 1.1 Introduction; 1.2 Purpose of This Book; 1.3 Predicated Requirements on Receiver Performance; 1.4 Overall EW Receiver System Operation; 1.5 Encoder Designs; 1.6 Approaches and References; 1.7 Criterion of the Software Approaches; 1.8 Organization of the Book; References; Chapter 2 Amplification Required in Front of the ADC; 2.1 Introduction; 2.2 Basic Design Criterion; 2.3 Inputs to the Computer Program; 2.3.1 The Inputs Related to the RF Amplifier; 2.3.2 The Inputs Related to the ADC
- 2.3.3 The Inputs Related to the FFT Operator2.4 Constants Generation; 2.5 Equations Derived; 2.6 Modification from the Previous Program; 2.7 An Example; 2.8 Nominal Sensitivity and Single Signal Dynamic Range; 2.9 Generate Nominal Values for ADC with Different Numbers of Bits; 2.10 Noise Floor and the Number of Bits; 2.11 Another Example; 2.12 Discussions of Results; References; Chapter 3 Dynamic Range Study Through Eigenvalue and MUSIC Methods; 3.1 Introduction; 3.2 Basic Definitions of Dynamic Range; 3.3 Prerequisite for Dynamic Range Measurements
- 3.4 Single Signal Receiver Dynamic Range (SDR)3.5 Dynamic Range for Receiver with Multiple Signal Capability; 3.5.1 Single-Signal Dynamic Range; 3.5.2 Two-Signal Third-Order Intermodulation Spur Free Dynamic Range; 3.5.3 The Two-Signal Instantaneous Dynamic Range (IDR); 3.6 A Brief Discussion on the Eigenvalue Decomposition and MUSIC Methods; 3.7 Define the Processing Procedure; 3.8 Eigenvalues Generated with Noise and Noise Plus Signals; 3.9 IDR Determination Through Eigenvalues; 3.10 MUSIC Method; 3.11 IDR Determined by Frequency Identification
- 3.12 Amplification Required in Front of the ADC3.13 Digitization Effect on Sensitivity as a Function of a Number of Bits; 3.14 Digitization Effect in the Instantaneous Dynamic Range Calculation; 3.15 Curve Fitting for the Instantaneous Dynamic Range; 3.16 IDR Calculated with 128 Data Points and Digitization; 3.17 Generating Very High IDR Using Long Data Length; 3.18 Conclusion; References; Chapter 4 Dynamic Range Study Through Fast Fourier Transform (FFT); 4.1 Introduction; 4.2 Using Simulation Approach to Find the IDR; 4.3 Local Peaks; 4.4 Simulation Procedure; 4.5 Threshold Determination
- 4.6 Windows and Input Frequencies4.7 IDR Results; 4.8 IDR with a Rectangular Window; 4.9 IDR with a Rectangular Window and Close Spaced Frequencies; 4.10 IDR with Hamming Window; 4.11 IDR with Blackman Window; 4.12 IDR with a Chebyshev Window; 4.13 IDR with a Park-McClellan Window; 4.14 Data Length and IDR; 4.15 Receiver Design Considerations; 4.16 Conclusion; 4.17 Remarks; References; Chapter 5 In-Phase and Quadrature Phase (IQ) Study; 5.1 Introduction; 5.2 Approach to Find the IQ Imbalance; 5.3 FFT Output Imbalance Measurement Procedure; 5.4 Results from Measuring FFT