Solitons, instantons, and twistors /
Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford ; New York :
Oxford University Press,
2010.
|
Colección: | Oxford mathematics.
Oxford graduate texts in mathematics ; 19. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Integrability in classical mathematics
- Soliton equations and the inverse scattering transform
- Hamiltonian formalism and zero-curvature representation
- Lie symmetries and reductions
- Lagrangian formalism and field theory
- Gauge field theory
- Integrability of ASDYM and twistor theory
- Symmetry reductions and the integrable chiral model
- Gravitational instantons
- Anti-self-dual conformal structures
- Appendix A: Manifolds and topology
- Appendix B: Complex analysis
- Appendix C: Overdetermined PDEs.