Cargando…

Solitons, instantons, and twistors /

Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dunajski, Maciej
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Oxford University Press, 2010.
Colección:Oxford mathematics.
Oxford graduate texts in mathematics ; 19.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn507435856
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 090813s2010 enka ob 001 0 eng d
040 |a CDX  |b eng  |e pn  |c CDX  |d N$T  |d OCLCQ  |d EBLCP  |d YDXCP  |d IDEBK  |d E7B  |d OCLCQ  |d IUL  |d COO  |d MHW  |d OCLCQ  |d DEBSZ  |d NLGGC  |d OCLCQ  |d AGLDB  |d OCLCF  |d OCLCQ  |d VTS  |d YOU  |d STF  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d OCLCO  |d OCLCQ  |d YDX 
019 |a 541901655 
020 |a 9780191574108  |q (electronic bk.) 
020 |a 0191574104  |q (electronic bk.) 
020 |z 9780198570622  |q (hardback) 
020 |z 0198570627  |q (hardback) 
020 |z 9780198570639  |q (pbk.) 
020 |z 0198570635  |q (pbk.) 
024 8 |a 9786612383342 
029 0 |a CDX  |b 11549939 
029 1 |a AU@  |b 000052693385 
029 1 |a DEBBG  |b BV043158350 
029 1 |a DEBSZ  |b 372594530 
029 1 |a DEBSZ  |b 37931214X 
029 1 |a DEBSZ  |b 421922923 
029 1 |a DEBSZ  |b 445993979 
035 |a (OCoLC)507435856  |z (OCoLC)541901655 
050 4 |a QC174.26.W28  |b D86 2010eb 
072 7 |a SCI  |x 067000  |2 bisacsh 
082 0 4 |a 530.12/4  |2 22 
049 |a UAMI 
100 1 |a Dunajski, Maciej. 
245 1 0 |a Solitons, instantons, and twistors /  |c Maciej Dunajski. 
260 |a Oxford ;  |a New York :  |b Oxford University Press,  |c 2010. 
300 |a 1 online resource (xi, 359 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Oxford mathematics 
490 1 |a Oxford graduate texts in mathematics ;  |v 19 
504 |a Includes bibliographical references and index. 
505 0 |a Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs. 
520 |a Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Solitons  |x Mathematics. 
650 0 |a Instantons  |x Mathematics. 
650 0 |a Wave-motion, Theory of. 
650 0 |a Geometry, Differential. 
650 0 |a Twistor theory. 
650 6 |a Solitons  |x Mathématiques. 
650 6 |a Instantons  |x Mathématiques. 
650 6 |a Théorie du mouvement ondulatoire. 
650 6 |a Géométrie différentielle. 
650 6 |a Théorie des torseurs. 
650 7 |a SCIENCE  |x Waves & Wave Mechanics.  |2 bisacsh 
650 7 |a Geometry, Differential.  |2 fast  |0 (OCoLC)fst00940919 
650 7 |a Solitons  |x Mathematics.  |2 fast  |0 (OCoLC)fst01125560 
650 7 |a Twistor theory.  |2 fast  |0 (OCoLC)fst01159875 
650 7 |a Wave-motion, Theory of.  |2 fast  |0 (OCoLC)fst01172888 
776 0 8 |i Print version:  |a Dunajski, Maciej.  |t Solitons, instantons, and twistors.  |d Oxford ; New York : Oxford University Press, 2010  |z 9780198570622  |w (DLC) 2009032333  |w (OCoLC)320199531 
830 0 |a Oxford mathematics. 
830 0 |a Oxford graduate texts in mathematics ;  |v 19. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=302392  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 20450807 
938 |a Coutts Information Services  |b COUT  |n 11549939 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7033792 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL472246 
938 |a EBSCOhost  |b EBSC  |n 302392 
938 |a YBP Library Services  |b YANK  |n 3162752 
994 |a 92  |b IZTAP