Solitons, instantons, and twistors /
Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford ; New York :
Oxford University Press,
2010.
|
Colección: | Oxford mathematics.
Oxford graduate texts in mathematics ; 19. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | EBSCO_ocn507435856 | ||
003 | OCoLC | ||
005 | 20231017213018.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 090813s2010 enka ob 001 0 eng d | ||
040 | |a CDX |b eng |e pn |c CDX |d N$T |d OCLCQ |d EBLCP |d YDXCP |d IDEBK |d E7B |d OCLCQ |d IUL |d COO |d MHW |d OCLCQ |d DEBSZ |d NLGGC |d OCLCQ |d AGLDB |d OCLCF |d OCLCQ |d VTS |d YOU |d STF |d DKC |d OCLCQ |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d YDX | ||
019 | |a 541901655 | ||
020 | |a 9780191574108 |q (electronic bk.) | ||
020 | |a 0191574104 |q (electronic bk.) | ||
020 | |z 9780198570622 |q (hardback) | ||
020 | |z 0198570627 |q (hardback) | ||
020 | |z 9780198570639 |q (pbk.) | ||
020 | |z 0198570635 |q (pbk.) | ||
024 | 8 | |a 9786612383342 | |
029 | 0 | |a CDX |b 11549939 | |
029 | 1 | |a AU@ |b 000052693385 | |
029 | 1 | |a DEBBG |b BV043158350 | |
029 | 1 | |a DEBSZ |b 372594530 | |
029 | 1 | |a DEBSZ |b 37931214X | |
029 | 1 | |a DEBSZ |b 421922923 | |
029 | 1 | |a DEBSZ |b 445993979 | |
035 | |a (OCoLC)507435856 |z (OCoLC)541901655 | ||
050 | 4 | |a QC174.26.W28 |b D86 2010eb | |
072 | 7 | |a SCI |x 067000 |2 bisacsh | |
082 | 0 | 4 | |a 530.12/4 |2 22 |
049 | |a UAMI | ||
100 | 1 | |a Dunajski, Maciej. | |
245 | 1 | 0 | |a Solitons, instantons, and twistors / |c Maciej Dunajski. |
260 | |a Oxford ; |a New York : |b Oxford University Press, |c 2010. | ||
300 | |a 1 online resource (xi, 359 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Oxford mathematics | |
490 | 1 | |a Oxford graduate texts in mathematics ; |v 19 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs. | |
520 | |a Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan. | ||
588 | 0 | |a Print version record. | |
590 | |a eBooks on EBSCOhost |b EBSCO eBook Subscription Academic Collection - Worldwide | ||
650 | 0 | |a Solitons |x Mathematics. | |
650 | 0 | |a Instantons |x Mathematics. | |
650 | 0 | |a Wave-motion, Theory of. | |
650 | 0 | |a Geometry, Differential. | |
650 | 0 | |a Twistor theory. | |
650 | 6 | |a Solitons |x Mathématiques. | |
650 | 6 | |a Instantons |x Mathématiques. | |
650 | 6 | |a Théorie du mouvement ondulatoire. | |
650 | 6 | |a Géométrie différentielle. | |
650 | 6 | |a Théorie des torseurs. | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a Geometry, Differential. |2 fast |0 (OCoLC)fst00940919 | |
650 | 7 | |a Solitons |x Mathematics. |2 fast |0 (OCoLC)fst01125560 | |
650 | 7 | |a Twistor theory. |2 fast |0 (OCoLC)fst01159875 | |
650 | 7 | |a Wave-motion, Theory of. |2 fast |0 (OCoLC)fst01172888 | |
776 | 0 | 8 | |i Print version: |a Dunajski, Maciej. |t Solitons, instantons, and twistors. |d Oxford ; New York : Oxford University Press, 2010 |z 9780198570622 |w (DLC) 2009032333 |w (OCoLC)320199531 |
830 | 0 | |a Oxford mathematics. | |
830 | 0 | |a Oxford graduate texts in mathematics ; |v 19. | |
856 | 4 | 0 | |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=302392 |z Texto completo |
938 | |a YBP Library Services |b YANK |n 20450807 | ||
938 | |a Coutts Information Services |b COUT |n 11549939 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL7033792 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL472246 | ||
938 | |a EBSCOhost |b EBSC |n 302392 | ||
938 | |a YBP Library Services |b YANK |n 3162752 | ||
994 | |a 92 |b IZTAP |