|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn505150634 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
010605s2001 si ob 001 0 eng d |
040 |
|
|
|a CaPaEBR
|b eng
|e pn
|c UBY
|d OCLCQ
|d N$T
|d IDEBK
|d E7B
|d OCLCQ
|d OCLCF
|d EBLCP
|d DEBSZ
|d OCLCQ
|d YDXCP
|d OCLCQ
|d AZK
|d LOA
|d JBG
|d COCUF
|d AGLDB
|d MOR
|d CCO
|d PIFAG
|d VGM
|d ZCU
|d OCLCQ
|d MERUC
|d OCLCQ
|d U3W
|d STF
|d WRM
|d OCLCQ
|d VTS
|d NRAMU
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d TKN
|d OCLCQ
|d DKC
|d AU@
|d OCLCQ
|d M8D
|d UKAHL
|d OCLCQ
|d LEAUB
|d AJS
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 268794151
|a 646768799
|a 764501653
|a 815754655
|a 961533963
|a 962630780
|a 1086488844
|
020 |
|
|
|a 9789812799838
|q (electronic bk.)
|
020 |
|
|
|a 9812799834
|q (electronic bk.)
|
020 |
|
|
|a 1281951390
|
020 |
|
|
|a 9781281951397
|
020 |
|
|
|z 9789810247089
|
020 |
|
|
|z 9810247087
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000049162628
|
029 |
1 |
|
|a AU@
|b 000053267464
|
029 |
1 |
|
|a DEBBG
|b BV043142147
|
029 |
1 |
|
|a DEBBG
|b BV044179418
|
029 |
1 |
|
|a DEBSZ
|b 40524794X
|
029 |
1 |
|
|a DEBSZ
|b 422098116
|
029 |
1 |
|
|a GBVCP
|b 803053347
|
029 |
1 |
|
|a NZ1
|b 13858153
|
035 |
|
|
|a (OCoLC)505150634
|z (OCoLC)268794151
|z (OCoLC)646768799
|z (OCoLC)764501653
|z (OCoLC)815754655
|z (OCoLC)961533963
|z (OCoLC)962630780
|z (OCoLC)1086488844
|
050 |
|
4 |
|a QC20.7.M3
|b A43 2001eb
|
072 |
|
7 |
|a SCI
|x 040000
|2 bisacsh
|
072 |
|
7 |
|a PHS
|2 bicssc
|
082 |
0 |
4 |
|a 530.15/29434
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Aldrovandi, R.
|q (Ruben)
|
245 |
1 |
0 |
|a Special matrices of mathematical physics :
|b stochastic, circulant, and Bell matrices /
|c R. Aldrovandi.
|
260 |
|
|
|a Singapore ;
|a River Edge, N.J. :
|b World Scientific,
|c ©2001.
|
300 |
|
|
|a 1 online resource (xv, 323 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 309-314) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This work expounds three special kinds of matrices that are of physical interest, centring on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, non-equilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and non-commutative geometry. Bell polynomials offer closed expressions for many formulas concerning Lie algebra invariants, differential geometry and real gases, and their matrices are instrumental in the study of chaotic mappings.
|
505 |
0 |
|
|a Ch. 1. Some fundamental notions. 1.1. Definitions. 1.2. Components of a matrix. 1.3. Matrix functions. 1.4. Normal matrices -- ch. 2. Evolving systems -- ch. 3. Markov chains. 3.1. Non-negative matrices. 3.2. General properties -- ch. 4. Glass transition -- ch. 5. The Kerner model. 5.1. A simple example: Se-As glass -- ch. 6. Formal developments. 6.1. Spectral aspects. 6.2. Reducibility and regularity. 6.3. Projectors and asymptotics. 6.4. Continuum time -- ch. 7. Equilibrium, dissipation and ergodicity. 7.1. Recurrence, transience and periodicity. 7.2. Detailed balancing and reversibility. 7.3. Ergodicity -- ch. 8. Prelude -- ch. 9. Definition and main properties. 9.1. Bases. 9.2. Double Fourier transform. 9.3. Random walks -- ch. 10. Discrete quantum mechanics. 10.1. Introduction. 10.2. Weyl-Heisenberg groups. 10.3. Weyl-Wigner transformations. 10.4. Braiding and quantum groups -- ch. 11. Quantum symplectic structure. 11.1. Matrix differential geometry. 11.2. The symplectic form. 11.3. The quantum fabric -- ch. 12. An organizing tool -- ch. 13. Bell polynomials. 13.1. Definition and elementary properties. 13.2. The matrix representation. 13.3. The Lagrange inversion formula. 13.4. Developments -- ch. 14. Determinants and traces. 14.1. Introduction. 14.2. Symmetric functions. 14.3. Polynomials. 14.4. Characteristic polynomials. 14.5. Lie algebras invariants -- ch. 15. Projectors and iterates. 15.1. Projectors, revisited. 15.2. Continuous iterates -- ch. 16. Gases: real and ideal. 16.1. Microcanonical ensemble. 16.2. The canonical ensemble. 16.3. The grand canonical ensemble. 16.4. Braid statistics. 16.5. Condensation theories. 16.6. The Fredholm formalism.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
|
0 |
|a Matrices.
|
650 |
|
6 |
|a Physique mathématique.
|
650 |
|
6 |
|a Matrices.
|
650 |
|
7 |
|a SCIENCE
|x Physics
|x Mathematical & Computational.
|2 bisacsh
|
650 |
|
7 |
|a Mathematical physics.
|2 fast
|0 (OCoLC)fst01012104
|
650 |
|
7 |
|a Matrices.
|2 fast
|0 (OCoLC)fst01012399
|
776 |
0 |
8 |
|i Print version:
|a Aldrovandi, R. (Ruben).
|t Special matrices of mathematical physics.
|d Singapore ; River Edge, N.J. : World Scientific, ©2001
|w (DLC) 2001026864
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235791
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24685496
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1681436
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10255829
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 235791
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 195139
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2915181
|
994 |
|
|
|a 92
|b IZTAP
|