Cargando…

Special matrices of mathematical physics : stochastic, circulant, and Bell matrices /

This work expounds three special kinds of matrices that are of physical interest, centring on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, non-equilibrium, and hypersensitivity to ini...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Aldrovandi, R. (Ruben)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, N.J. : World Scientific, ©2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn505150634
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 010605s2001 si ob 001 0 eng d
040 |a CaPaEBR  |b eng  |e pn  |c UBY  |d OCLCQ  |d N$T  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d EBLCP  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d VGM  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d AJS  |d OCLCO  |d OCLCQ 
019 |a 268794151  |a 646768799  |a 764501653  |a 815754655  |a 961533963  |a 962630780  |a 1086488844 
020 |a 9789812799838  |q (electronic bk.) 
020 |a 9812799834  |q (electronic bk.) 
020 |a 1281951390 
020 |a 9781281951397 
020 |z 9789810247089 
020 |z 9810247087  |q (alk. paper) 
029 1 |a AU@  |b 000049162628 
029 1 |a AU@  |b 000053267464 
029 1 |a DEBBG  |b BV043142147 
029 1 |a DEBBG  |b BV044179418 
029 1 |a DEBSZ  |b 40524794X 
029 1 |a DEBSZ  |b 422098116 
029 1 |a GBVCP  |b 803053347 
029 1 |a NZ1  |b 13858153 
035 |a (OCoLC)505150634  |z (OCoLC)268794151  |z (OCoLC)646768799  |z (OCoLC)764501653  |z (OCoLC)815754655  |z (OCoLC)961533963  |z (OCoLC)962630780  |z (OCoLC)1086488844 
050 4 |a QC20.7.M3  |b A43 2001eb 
072 7 |a SCI  |x 040000  |2 bisacsh 
072 7 |a PHS  |2 bicssc 
082 0 4 |a 530.15/29434  |2 21 
049 |a UAMI 
100 1 |a Aldrovandi, R.  |q (Ruben) 
245 1 0 |a Special matrices of mathematical physics :  |b stochastic, circulant, and Bell matrices /  |c R. Aldrovandi. 
260 |a Singapore ;  |a River Edge, N.J. :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xv, 323 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 309-314) and index. 
588 0 |a Print version record. 
520 |a This work expounds three special kinds of matrices that are of physical interest, centring on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, non-equilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and non-commutative geometry. Bell polynomials offer closed expressions for many formulas concerning Lie algebra invariants, differential geometry and real gases, and their matrices are instrumental in the study of chaotic mappings. 
505 0 |a Ch. 1. Some fundamental notions. 1.1. Definitions. 1.2. Components of a matrix. 1.3. Matrix functions. 1.4. Normal matrices -- ch. 2. Evolving systems -- ch. 3. Markov chains. 3.1. Non-negative matrices. 3.2. General properties -- ch. 4. Glass transition -- ch. 5. The Kerner model. 5.1. A simple example: Se-As glass -- ch. 6. Formal developments. 6.1. Spectral aspects. 6.2. Reducibility and regularity. 6.3. Projectors and asymptotics. 6.4. Continuum time -- ch. 7. Equilibrium, dissipation and ergodicity. 7.1. Recurrence, transience and periodicity. 7.2. Detailed balancing and reversibility. 7.3. Ergodicity -- ch. 8. Prelude -- ch. 9. Definition and main properties. 9.1. Bases. 9.2. Double Fourier transform. 9.3. Random walks -- ch. 10. Discrete quantum mechanics. 10.1. Introduction. 10.2. Weyl-Heisenberg groups. 10.3. Weyl-Wigner transformations. 10.4. Braiding and quantum groups -- ch. 11. Quantum symplectic structure. 11.1. Matrix differential geometry. 11.2. The symplectic form. 11.3. The quantum fabric -- ch. 12. An organizing tool -- ch. 13. Bell polynomials. 13.1. Definition and elementary properties. 13.2. The matrix representation. 13.3. The Lagrange inversion formula. 13.4. Developments -- ch. 14. Determinants and traces. 14.1. Introduction. 14.2. Symmetric functions. 14.3. Polynomials. 14.4. Characteristic polynomials. 14.5. Lie algebras invariants -- ch. 15. Projectors and iterates. 15.1. Projectors, revisited. 15.2. Continuous iterates -- ch. 16. Gases: real and ideal. 16.1. Microcanonical ensemble. 16.2. The canonical ensemble. 16.3. The grand canonical ensemble. 16.4. Braid statistics. 16.5. Condensation theories. 16.6. The Fredholm formalism. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematical physics. 
650 0 |a Matrices. 
650 6 |a Physique mathématique. 
650 6 |a Matrices. 
650 7 |a SCIENCE  |x Physics  |x Mathematical & Computational.  |2 bisacsh 
650 7 |a Mathematical physics.  |2 fast  |0 (OCoLC)fst01012104 
650 7 |a Matrices.  |2 fast  |0 (OCoLC)fst01012399 
776 0 8 |i Print version:  |a Aldrovandi, R. (Ruben).  |t Special matrices of mathematical physics.  |d Singapore ; River Edge, N.J. : World Scientific, ©2001  |w (DLC) 2001026864 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235791  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685496 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681436 
938 |a ebrary  |b EBRY  |n ebr10255829 
938 |a EBSCOhost  |b EBSC  |n 235791 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 195139 
938 |a YBP Library Services  |b YANK  |n 2915181 
994 |a 92  |b IZTAP