Cargando…

The index theorem and the heat equation method /

This book provides a self-contained representation of the local version of the Atiyah-Singer index theorem. It contains proofs of the Hodge theorem, the local index theorems for the Dirac operator and some first order geometric elliptic operators by using the heat equation method. The proofs are up...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yu, Yanlin
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2001.
Colección:Nankai tracts in mathematics ; v. 2.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn505142671
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 010307s2001 si ob 001 0 eng d
040 |a CaPaEBR  |b eng  |e pn  |c UBY  |d OCLCQ  |d N$T  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d OCLCO  |d YDXCP  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d VGM  |d OCLCQ  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d VT2  |d OCLCQ  |d WYU  |d STF  |d M8D  |d HS0  |d LEAUB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 269371305  |a 646768149  |a 764498301  |a 961533153  |a 962630477  |a 1086428361 
020 |a 9789812810106  |q (electronic bk.) 
020 |a 9812810102  |q (electronic bk.) 
020 |z 9789810246105 
020 |z 9810246102  |q (alk. paper) 
029 1 |a AU@  |b 000049162626 
029 1 |a DEBBG  |b BV043146955 
029 1 |a DEBSZ  |b 422097691 
029 1 |a GBVCP  |b 803052979 
029 1 |a NZ1  |b 13857896 
035 |a (OCoLC)505142671  |z (OCoLC)269371305  |z (OCoLC)646768149  |z (OCoLC)764498301  |z (OCoLC)961533153  |z (OCoLC)962630477  |z (OCoLC)1086428361 
050 4 |a QA614.92  |b .Y8 2001eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514/.74  |2 22 
049 |a UAMI 
100 1 |a Yu, Yanlin. 
245 1 4 |a The index theorem and the heat equation method /  |c Yanlin Yu. 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xix, 287 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Nankai tracts in mathematics ;  |v v. 2 
504 |a Includes bibliographical references (pages 279-282) and index. 
588 0 |a Print version record. 
505 0 |a PREFACE; CONTENTS; DEFINITIONS AND FORMULAS; CHAPTER 1 PRELIMINARIES IN RIEMANNIAN GEOMETRY; 1.1 Basic Notions of Riemannian Geometry; 1.2 Computations by using Orthonormal Moving Frame; 1.3 Differential Forms and Orthonormal Moving Frame Method; 1.4 Classical Geometric Operators; 1.5 Normal Coordinates; 1.6 Computations on Sphere; 1.7 Connections on Vector Bundles and Principal Bundles; 1.8 General Tensor Calculus; CHAPTER 2 SCHRODINGER AND HEAT OPERATORS; 2.1 Fundamental Solution and Levi Iteration; 2.2 Existence of Fundamental Solution; 2.3 Cauchy Problem of Heat Equation 
505 8 |a 2.4 Hodge Theorem2.5 Applications of Hodge Theorem; 2.6 Index Problem; CHAPTER 3 MP PARAMETRIX AND APPLICATIONS; 3.1 MP Parametrix; 3.2 Existence of Initial Solutions; 3.3 Asymptotic Expansion for Heat Kernel; 3.4 Local Index for Elliptic Operators; CHAPTER 4 CHERN-WEIL THEORY; 4.1 Characteristic Forms and Characteristic Classes; 4.2 General Characteristic Forms; 4.3 Chern Root Algorithm; 4.4 Formal Approach to Local Index of Signature Operator; CHAPTER 5 CLIFFORD ALGEBRA AND SUPER ALGEBRA; 5.1 Clifford Algebra; 5.2 Super Algebra; 5.3 Computations on Supertraces; CHAPTER 6 DIRAC OPERATOR 
505 8 |a 6.1 Spin Structure6.2 Spinor Bundle; 6.3 Dirac Operator; 6.4 Index of Dirac Operator; CHAPTER 7 LOCAL INDEX THEOREMS; 7.1 Local Index Theorem for Dirac Operator; 7.2 Local Index Theorem for Signature Operator; 7.3 Local Index Theorem for de Rham-Hodge Operator; CHAPTER 8 RIEMANN-ROCH THEOREM; 8.1 Hermitian Metric; 8.2 Hermitian Connection; 8.3 Riemann-Roch Operator; 8.4 Weitzenbock Formula; 8.5 Index Theorem; 8.6 Riemann-Roch Operator in Complex Analysis; REFERENCES; INDEX 
520 |a This book provides a self-contained representation of the local version of the Atiyah-Singer index theorem. It contains proofs of the Hodge theorem, the local index theorems for the Dirac operator and some first order geometric elliptic operators by using the heat equation method. The proofs are up to the standard of pure mathematics. In addition, a Chern root algorithm is introduced for proving the local index theorems, and it seems to be as efficient as other methods. Contents: Preliminaries in Riemannian Geometry; Schrödinger and Heat Operators; MP Parametrix and Applications; Chern-Weil Th. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Atiyah-Singer index theorem. 
650 0 |a Heat equation. 
650 6 |a Théorème d'Atiyah-Singer. 
650 6 |a Équation de la chaleur. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Atiyah-Singer index theorem  |2 fast 
650 7 |a Heat equation  |2 fast 
776 0 8 |i Print version:  |a Yu, Yanlin.  |t Index theorem and the heat equation method.  |d Singapore ; River Edge, NJ : World Scientific, ©2001  |w (DLC) 2001017928 
830 0 |a Nankai tracts in mathematics ;  |v v. 2. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235833  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10255391 
938 |a EBSCOhost  |b EBSC  |n 235833 
938 |a YBP Library Services  |b YANK  |n 2915206 
994 |a 92  |b IZTAP