|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn500927042 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
100119s1968 nyu ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d EBLCP
|d IDEBK
|d E7B
|d OCLCQ
|d OCLCF
|d UKDOC
|d NLGGC
|d OCLCQ
|d OPELS
|d DEBBG
|d YDXCP
|d OCLCQ
|d DEBSZ
|d AGLDB
|d OCLCQ
|d MERUC
|d VTS
|d OCLCQ
|d STF
|d LEAUB
|d M8D
|d OCLCQ
|d INARC
|d AJS
|d OCLCO
|d OCLCQ
|d OCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 316568671
|a 646827704
|a 823843556
|a 823912267
|a 824099329
|a 824154747
|a 907196084
|a 935268516
|
020 |
|
|
|a 9780080955513
|q (electronic bk.)
|
020 |
|
|
|a 0080955517
|q (electronic bk.)
|
020 |
|
|
|a 0124974503
|
020 |
|
|
|a 9780124974500
|
020 |
|
|
|a 1282289691
|
020 |
|
|
|a 9781282289697
|
020 |
|
|
|z 9780124974500
|
020 |
|
|
|z 9781856177894
|
029 |
1 |
|
|a AU@
|b 000048129467
|
029 |
1 |
|
|a DEBBG
|b BV036962823
|
029 |
1 |
|
|a DEBBG
|b BV039834546
|
029 |
1 |
|
|a DEBBG
|b BV042318042
|
029 |
1 |
|
|a DEBBG
|b BV043044396
|
029 |
1 |
|
|a DEBSZ
|b 407394400
|
029 |
1 |
|
|a DEBSZ
|b 421939982
|
029 |
1 |
|
|a DEBSZ
|b 482368764
|
029 |
1 |
|
|a NZ1
|b 15193362
|
029 |
1 |
|
|a NZ1
|b 15906449
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910110501905765
|
029 |
1 |
|
|a AU@
|b 000054170458
|
035 |
|
|
|a (OCoLC)500927042
|z (OCoLC)316568671
|z (OCoLC)646827704
|z (OCoLC)823843556
|z (OCoLC)823912267
|z (OCoLC)824099329
|z (OCoLC)824154747
|z (OCoLC)907196084
|z (OCoLC)935268516
|
037 |
|
|
|a 179840:176277
|b Elsevier Science & Technology
|n http://www.sciencedirect.com
|
050 |
|
4 |
|a QA387
|b .M55 1968eb
|
072 |
|
7 |
|a MAT
|x 002050
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.55
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Miller, Willard.
|
245 |
1 |
0 |
|a Lie theory and special functions /
|c Willard Miller, Jr.
|
260 |
|
|
|a New York :
|b Academic Press,
|c 1968.
|
300 |
|
|
|a 1 online resource (xv, 338 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics in science and engineering ;
|v v. 43
|
504 |
|
|
|a Includes bibliographical references (pages 330-335) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Lie theory and special functions.
|
505 |
0 |
|
|6 880-01
|a Front Cover; Lie Theory and Special Functions; Copyright Page; Contents; Preface; Chapter 1. Résumé of Lie Theory; 1-1 Local Lie Groups; 1-2 Examples; 1-3 Local Transformation Groups; 1-4 Examples of Local Transformation Groups; Chapter 2. Representations and Realizations of Lie Algebras; 2-1 Representations of Lie Algebras; 2-2 Realizations of Representations; 2-3 Representations of L(O3); 2-4 The Angular Momentum Operators; 2-5 The Lie Algebras G(a, b); 2-6 Representations of G(a, b); 2-7 Realizations of G(a, b) in Two Variables; 2-8 Realizations of G(a, b) in One Variable.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Lie groups.
|
650 |
|
0 |
|a Functions, Special.
|
650 |
|
0 |
|a Lie algebras.
|
650 |
|
0 |
|a Continuous groups.
|
650 |
|
6 |
|a Algèbres de Lie.
|
650 |
|
6 |
|a Groupes continus.
|
650 |
|
6 |
|a Groupes de Lie.
|
650 |
|
6 |
|a Fonctions spéciales.
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Linear.
|2 bisacsh
|
650 |
|
7 |
|a Lie algebras.
|2 fast
|0 (OCoLC)fst00998125
|
650 |
|
7 |
|a Continuous groups.
|2 fast
|0 (OCoLC)fst00876776
|
650 |
|
7 |
|a Functions, Special.
|2 fast
|0 (OCoLC)fst00936132
|
650 |
|
7 |
|a Lie groups.
|2 fast
|0 (OCoLC)fst00998135
|
650 |
|
7 |
|a Geofisica.
|2 larpcal
|
776 |
0 |
8 |
|i Print version:
|a Miller, Willard.
|t Lie theory and special functions.
|d New York, Academic Press, 1968
|z 9780124974500
|w (DLC) 68018677
|w (OCoLC)440565
|
830 |
|
0 |
|a Mathematics in science and engineering ;
|v v. 43.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297132
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 4-19 The Representations (λ, I) Q (λ', 4)4-20 The Representations (p) Q (λ, I); 4-21 A Contraction of G(0,1); Chapter 5. Lie Theory and Hypergeometric Functions; 5-1 The Representation Dμ(u, m0); 5-2 The Representation ↑u; 5-3 The Representation ↓u; 5-4 The Representation D(2u); 5-5 The Tensor Product D(2u) D(2u); 5-6 The Tensor Product ↑u Q ↑u; 5-7 Differential Relations for the Matrix Elements; 5-8 Type B Realizations of D(u, m0); 5-9 Type B Realizations of ↑u; 5-10 Weisner's Method for Type B Operators; 5-11 Type A Realizations of D(u, m0); 5-12 Type A Realizations of ↑u.
|
880 |
8 |
|
|6 505-00/(S
|a 4-4 Differential Equations for the Matrix Elements4-5 The Representation; 4-6 A Realization of R(ω, mo, μ) by Type D Operators; 4-7 A Realization of ↑ω, μ by Type D' Operators; 4-8 Transformations of Type C' Operators; 4-9 Type C' Realizations of R(ω, m0, μ); 4-10 Type C' Realizations of ↑o,1; 4-11 The Group S4; 4-12 Induced Representations of G4; 4-13 The Hilbert Space F; 4-14 The Unitary Representation (λ, I); 4-15 The Matrix Elements of (λ, I); 4-16 The Unitary Representations (λ, -I); 4-17 The Tensor Products (λ, I) Q (λ', l'); 4-18 The Representations (λ, I) Q (λ', 4').
|
880 |
8 |
|
|6 505-00/(S
|a Chapter 3. Lie Theory and Bessel Functions3-1 The Representations Q(ω, mo); 3-2 Recursion Relations for the Matrix Elements; 3-3 Realizations of Q(ω, mo) in Two Variables; 3-4 Weisner's Method for Bessel Functions; 3-5 The Real Euclidean Group E3; 3-6 Unitary Representations of Lie Groups; 3-7 Induced Representations of E3; 3-8 The Unitary Representations (p) of E3; 3-9 The Matrix Elements of (p); 3-10 The Infinitesimal Operators of (p); Chapter 4. Lie Theory und Confluent Hypergeometric Functions; 4-1 The Representation R(ω, mo, μ); 4-2 The Representation to ω, μ; 4-3 The Representation.
|
880 |
8 |
|
|6 505-01/(S
|a 5-13 Type A Realizations of ↓u5-14 Type A Realizations of D(2u); 5-15 Weisner's Method for Type A Operators; 5-16 The Group SU(2); 5-17 The Group G3; 5-18 Unitary Representations of G3; 5-19 Contractions of g(1, 0); Chapter 6. Special Functions Related to the Euclidean Group in 3-Space; 6-1 Representations of g6; 6-2 Type E Operators; 6-3 Type F Operators; 6-4 The Euclidean Group E6; 6-5 The Matrix Elements of (ω, s); Chapter 7. The Factorization Method; 7-1 Recurrence Relations; 7-2 The Factorization Types; Chapter 8. Generulized Lie Derivatives; 8-1 Generalized Derivations.
|
938 |
|
|
|a Internet Archive
|b INAR
|n lietheoryspecial0000unse
|
938 |
|
|
|a Internet Archive
|b INAR
|n lietheoryspecial0000mill
|
938 |
|
|
|a 123Library
|b 123L
|n 43839
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL453090
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 297132
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3101783
|
994 |
|
|
|a 92
|b IZTAP
|