|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn437175104 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr mn|---||||| |
008 |
090817s2006 ne o 000 0 eng d |
040 |
|
|
|a MERUC
|b eng
|e pn
|c MERUC
|d OCLCQ
|d OL$
|d MNU
|d CAMBR
|d IDEBK
|d N$T
|d YDXCP
|d OCLCF
|d AU@
|d DEBSZ
|d COO
|d LVT
|d OCLCQ
|d EBLCP
|d OCLCQ
|d OCLCA
|d OCLCQ
|d OCLCO
|d OCLCQ
|d K6U
|d LUN
|d OCLCO
|d OCLCQ
|d AUW
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 161747343
|a 171125103
|a 171140114
|a 271789122
|a 668201248
|a 814470754
|a 819635168
|a 852652230
|a 1167231059
|
020 |
|
|
|a 9780511256455
|q (electronic bk.)
|
020 |
|
|
|a 0511256450
|q (electronic bk.)
|
020 |
|
|
|a 9780511618314
|q (ebook)
|
020 |
|
|
|a 051161831X
|
020 |
|
|
|a 9780521849036
|q (hardback)
|
020 |
|
|
|a 0521849039
|
020 |
|
|
|a 9781107405820
|q (paperback)
|
020 |
|
|
|a 1107405823
|
029 |
1 |
|
|a AU@
|b 000042832561
|
029 |
1 |
|
|a DEBSZ
|b 379299917
|
029 |
1 |
|
|a DEBSZ
|b 445561289
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910051174305765
|
035 |
|
|
|a (OCoLC)437175104
|z (OCoLC)161747343
|z (OCoLC)171125103
|z (OCoLC)171140114
|z (OCoLC)271789122
|z (OCoLC)668201248
|z (OCoLC)814470754
|z (OCoLC)819635168
|z (OCoLC)852652230
|z (OCoLC)1167231059
|
050 |
|
4 |
|a QA246 .M75 2007eb
|
082 |
0 |
4 |
|a 512.723
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Montgomery, Hugh L.
|
245 |
1 |
0 |
|a Multiplicative Number Theory I :
|b Classical Theory.
|
260 |
|
|
|a Leiden :
|b Cambridge University Press,
|c 2006.
|
300 |
|
|
|a 1 online resource (572 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge Studies in Advanced Mathematics ;
|v no. 97
|
505 |
0 |
|
|a Cover; Half-title; Series-title; Title; Copyright; Dedication; Contents; Preface; Notation; 1 Dirichlet series: I; 2 The elementary theory of arithmetic functions; 3 Principles and first examples of sieve methods; 4 Primes in arithmetic progressions: I; 5 Dirichlet series: II; 6 The Prime Number Theorem; 7 Applications of the Prime Number Theorem; 8 Further discussion of the Prime Number Theorem; 9 Primitive characters and Gauss sums; 10 Analytic properties of the zeta function and L-functions; 11 Primes in arithmetic progressions: II; 12 Explicit formulæ; 13 Conditional estimates; 14 Zeros.
|
505 |
8 |
|
|a 15 Oscillations of error termsAppendix A The Riemann-Stieltjes integral; Appendix B Bernoulli numbers and the Euler-Maclaurin summation formula; Appendix C The gamma function; Appendix D Topics in harmonic analysis; Name index; Subject index.
|
520 |
|
|
|a Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. The authors bring their extensive and distinguished research expertise to prepare the student for intelligent reading of the more advanced research literature.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Numbers, Prime.
|
650 |
|
6 |
|a Nombres premiers.
|
650 |
|
7 |
|a Numbers, Prime
|2 fast
|
700 |
1 |
|
|a Vaughan, Robert C.
|
776 |
1 |
|
|z 9780521849036
|
830 |
|
0 |
|a Cambridge studies in advanced mathematics ;
|v no. 97.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=178884
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL279333
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 178884
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2620056
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2592608
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3279266
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2606051
|
994 |
|
|
|a 92
|b IZTAP
|