Cargando…

Groups of prime power order. Volume 1 /

This is the first of three volumes on finite p-group theory. It presents the state of the art and in addition contains numerous new and easy proofs of famous theorems, many exercises (some of them with solutions), and about 1500 open problems. It is expected to be useful to certain applied mathemati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berkovich, I͡A. G., 1938-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; New York : W. de Gruyter, ©2008.
Colección:De Gruyter expositions in mathematics ; 46.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn402487701
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 090618s2008 gw ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d NLGGC  |d EBLCP  |d DEBSZ  |d OCLCQ  |d COCUF  |d UIU  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d GRG  |d STF  |d VTS  |d ICG  |d INT  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d K6U  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d Y@Y  |d OCLCQ 
019 |a 808801315 
020 |a 9783110208221  |q (electronic bk.) 
020 |a 3110208229  |q (electronic bk.) 
020 |z 3110204185 
020 |z 9783110204186 
029 1 |a AU@  |b 000054168706 
029 1 |a AU@  |b 000066749699 
029 1 |a DEBBG  |b BV043111985 
029 1 |a DEBBG  |b BV044134763 
029 1 |a DEBSZ  |b 396252613 
029 1 |a DEBSZ  |b 421992492 
029 1 |a DEBSZ  |b 430726228 
029 1 |a DEBSZ  |b 478277792 
029 1 |a DKDLA  |b 820120-katalog:999935291805765 
035 |a (OCoLC)402487701  |z (OCoLC)808801315 
050 4 |a QA177  |b .B48eb vol. 1 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512.2  |2 22 
049 |a UAMI 
100 1 |a Berkovich, I͡A. G.,  |d 1938- 
245 1 0 |a Groups of prime power order.  |n Volume 1 /  |c by Yakov Berkovich. 
260 |a Berlin ;  |a New York :  |b W. de Gruyter,  |c ©2008. 
300 |a 1 online resource (xx, 512 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter expositions in mathematics,  |x 0938-6572 ;  |v 46 
504 |a Includes bibliographical references (pages 480-504) and indexes. 
500 |a "This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory"--Page 4 of cover, v. 1 
588 0 |a Print version record. 
505 0 |a Frontmatter; Contents; List of definitions and notations; Foreword; Preface; Introduction; 1. Groups with a cyclic subgroup of index p. Frattini subgroup. Varia; 2. The class number, character degrees; 3. Minimal classes; 4. p-groups with cyclic Frattini subgroup; 5. Hall's enumeration principle; 6. q'-automorphisms of q-groups; 7. Regular p-groups; 8. Pyramidal p-groups; 9. On p-groups of maximal class; 10. On abelian subgroups of p-groups; 11. On the power structure of a p-group; 12. Counting theorems for p-groups of maximal class; 13. Further counting theorems. 
505 8 |a 14. Thompson's critical subgroup; 15. Generators of p-groups; 16. Classification of finite p-groups all of whose noncyclic subgroups are normal; 17. Counting theorems for regular p-groups; 18. Counting theorems for irregular p-groups; 19. Some additional counting theorems; 20. Groups with small abelian subgroups and partitions; 21. On the Schur multiplier and the commutator subgroup; 22. On characters of p-groups; 23. On subgroups of given exponent; 24. Hall's theorem on normal subgroups of given exponent; 25. On the lattice of subgroups of a group; 26. Powerful p-groups. 
505 8 |a 27. p-groups with normal centralizers of all elements; 28. p-groups with a uniqueness condition for nonnormal subgroups; 29. On isoclinism; 30. On p-groups with few nonabelian subgroups of order pp and exponent p; 31. On p-groups with small p0-groups of operators; 32. W. Gaschütz's and P. Schmid's theorems on p-automorphisms of p-groups; 33. Groups of order pm with automorphisms of order pm-1, pm-2 or pm-3; 34. Nilpotent groups of automorphisms; 35. Maximal abelian subgroups of p-groups; 36. Short proofs of some basic characterization theorems of finite p-group theory. 
505 8 |a 37. MacWilliams' theorem; 38. p-groups with exactly two conjugate classes of subgroups of small orders and exponent p>2; 39. Alperin's problem on abelian subgroups of small index; 40. On breadth and class number of p-groups; 41. Groups in which every two noncyclic subgroups of the same order have the same rank; 42. On intersections of some subgroups; 43. On 2-groups with few cyclic subgroups of given order; 44. Some characterizations of metacyclic p-groups; 45. A counting theorem for p-groups of odd order; Appendix 1. The Hall-Petrescu formula. 
505 8 |a Appendix 2. Mann's proof of monomiality of p-groups; Appendix 3. Theorems of Isaacs on actions of groups; Appendix 4. Freiman's number-theoretical theorems; Appendix 5. Another proof of Theorem 5.4; Appendix 6. On the order of p-groups of given derived length; Appendix 7. Relative indices of elements of p-groups; Appendix 8. p-groups withabsolutely regular Frattini subgroup; Appendix 9. On characteristic subgroups of metacyclic groups; Appendix 10. On minimal characters of p-groups; Appendix 11. On sums of degrees of irreducible characters. 
520 |a This is the first of three volumes on finite p-group theory. It presents the state of the art and in addition contains numerous new and easy proofs of famous theorems, many exercises (some of them with solutions), and about 1500 open problems. It is expected to be useful to certain applied mathematics areas, such as combinatorics, coding theory, and computer sciences. The book should also be easily comprehensible to students and scientists with some basic knowledge of group theory and algebra. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Finite groups. 
650 0 |a Group theory. 
650 6 |a Groupes finis. 
650 6 |a Théorie des groupes. 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Finite groups.  |2 fast  |0 (OCoLC)fst00924908 
650 7 |a Group theory.  |2 fast  |0 (OCoLC)fst00948521 
776 0 8 |i Print version:  |a Berkovich, I͡A. G., 1938-  |t Groups of prime power order. Volume 1.  |d Berlin ; New York : W. de Gruyter, ©2008  |z 9783110204186 
830 0 |a De Gruyter expositions in mathematics ;  |v 46. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=274367  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL429279 
938 |a EBSCOhost  |b EBSC  |n 274367 
938 |a YBP Library Services  |b YANK  |n 2997476 
994 |a 92  |b IZTAP