Cargando…

Numerical simulation of waves and fronts in inhomogeneous solids /

This book shows the advanced methods of numerical simulation of waves and fronts propagation in inhomogeneous solids and introduces related important ideas associated with the application of numerical methods for these problems. Great care has been taken throughout the book to seek a balance between...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berezovski, Arkadi
Otros Autores: Engelbrecht, Jüri, Maugin, G. A. (Gérard A.), 1944-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, ©2008.
Colección:World Scientific series on nonlinear science. Monographs and treatises ; v. 62.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn318879598
003 OCoLC
005 20231017213018.0
006 m o d
007 cr zn|||||||||
008 080404s2008 si a ob 001 0 eng d
040 |a CDX  |b eng  |e pn  |c CDX  |d OCLCQ  |d IDEBK  |d OCLCQ  |d M6U  |d N$T  |d DEBSZ  |d MHW  |d OCLCA  |d OCLCQ  |d OCLCF  |d OCLCA  |d OCLCQ  |d YDXCP  |d STF  |d OCLCQ  |d AGLDB  |d ZCU  |d OCLCQ  |d MERUC  |d U3W  |d OCLCQ  |d VTS  |d ICG  |d INT  |d OCLCQ  |d WYU  |d JBG  |d OCLCQ  |d VT2  |d OCLCQ  |d DKC  |d REC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d LEAUB  |d OCLCO  |d OCLCQ 
019 |a 696628375  |a 1066686792  |a 1081230071  |a 1086439160  |a 1228580022 
020 |a 9812832688  |q (electronic bk.) 
020 |a 9789812832689  |q (electronic bk.) 
020 |z 9789812832672 
020 |z 981283267X  |q (hardcover ;  |q alk. paper) 
029 0 |a CDX  |b 9645833 
029 1 |a DEBBG  |b BV043081275 
029 1 |a DEBBG  |b BV044175582 
029 1 |a DEBSZ  |b 384346189 
029 1 |a DEBSZ  |b 421285117 
035 |a (OCoLC)318879598  |z (OCoLC)696628375  |z (OCoLC)1066686792  |z (OCoLC)1081230071  |z (OCoLC)1086439160  |z (OCoLC)1228580022 
050 4 |a QA935  |b .B375 2008eb 
072 7 |a SCI  |x 077000  |2 bisacsh 
082 0 4 |a 530.4/12 22  |2 22 
049 |a UAMI 
100 1 |a Berezovski, Arkadi. 
245 1 0 |a Numerical simulation of waves and fronts in inhomogeneous solids /  |c Arkadi Berezovski, Jüri Engelbrecht, Gérard A. Maugin. 
260 |a Singapore :  |b World Scientific,  |c ©2008. 
300 |a 1 online resource (xi, 223 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific series on nonlinear science. Series A, Monographs and treatises ;  |v v. 62 
504 |a Includes bibliographical references and index. 
520 |a This book shows the advanced methods of numerical simulation of waves and fronts propagation in inhomogeneous solids and introduces related important ideas associated with the application of numerical methods for these problems. Great care has been taken throughout the book to seek a balance between the thermomechanical analysis and numerical techniques. It is suitable for advanced undergraduate and graduate courses in continuum mechanics and engineering. Necessary prerequisites for this text are basic continuum mechanics and thermodynamics. Some elementary knowledge of numerical methods for p. 
588 0 |a Print version record. 
505 0 |a 1. Introduction. 1.1. Waves and fronts. 1.2. True and quasi-inhomogeneities. 1.3. Driving force and the corresponding dissipation. 1.4. Example of a straight brittle crack. 1.5. Example of a phase-transition front. 1.6. Numerical simulations of moving discontinuities. 1.7. Outline of the book -- 2. Material inhomogeneities in thermomechanics. 2.1. Kinematics. 2.2. Integral balance laws. 2.3. Localization and jump relations. 2.4. True and quasi-material inhomogeneities. 2.5. Brittle fracture. 2.6. Phase-transition fronts. 2.7. On the exploitation of Eshelby's stress in isothermal and adiabatic conditions. 2.8. Concluding remarks -- 3. Local phase equilibrium and jump relations at moving discontinuities. 3.1. Intrinsic stability of simple systems. 3.2. Local phase equilibrium. 3.3. Non-equilibrium states. 3.4. Local equilibrium jump relations at discontinuity. 3.5. Excess quantities at a moving discontinuity. 3.6. Velocity of moving discontinuity. 3.7. Concluding remarks -- 4. Linear thermoelasticity. 4.1. Local balance laws. 4.2. Balance of pseudomomentum. 4.3. Jump relations. 4.4. Wave-propagation algorithm: an example of finite volume methods. 4.5. Local equilibrium approximation. 4.6. Concluding remarks -- 5. Wave propagation in inhomogeneous solids. 5.1. Governing equations. 5.2. One-dimensional waves in periodic media. 5.3. One-dimensional weakly nonlinear waves in periodic media. 5.4. One-dimensional linear waves in laminates. 5.5. Nonlinear elastic wave in laminates under impact loading. 5.6. Waves in functionally graded materials. 5.7. Concluding remarks -- 6. Macroscopic dynamics of phase-transition fronts. 6.1. Isothermal impact-induced front propagation. 6.2. Numerical simulations. 6.3. Interaction of a plane wave with phase boundary. 6.4. One-dimensional adiabatic fronts in a bar. 6.5. Numerical simulations. 6.6. Concluding remarks -- 7. Two-dimensional elastic waves in inhomogeneous media. 7.1. Governing equations. Fluctuation splitting. 7.3. First-order Godunov scheme. 7.4. Transverse propagation. 7.5. Numerical tests. 7.6. Concluding remarks -- 8. Two-dimensional waves in functionally graded materials. 8.1. Impact loading of a plate. 8.2. Material properties. 8.3. Numerical simulations. 8.4. Centreline stress distribution. 8.5. Wave interaction with functionally graded inclusion. 8.6. Concluding remarks -- 9. Phase transitions fronts in two dimensions. 9.1. Material velocity at the phase boundary. 9.2. Numerical procedure. 9.3. Interaction of a non-plane wave with phase boundary. 9.4. Wave interaction with martensitic inclusion. 9.5. Concluding remarks -- 10. Dynamics of a straight brittle crack. 10.1. Formulation of the problem. 10.2. Stationary crack under impact load. 10.3. Jump relations at the crack front. 10.4. Velocity of the crack in mode I. 10.5. Concluding remarks -- 11. Summing up. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Elastic solids. 
650 0 |a Inhomogeneous materials. 
650 0 |a Wave-motion, Theory of. 
650 6 |a Solides élastiques. 
650 6 |a Milieux non homogènes (Physique) 
650 6 |a Théorie du mouvement ondulatoire. 
650 7 |a SCIENCE  |x Physics  |x Condensed Matter.  |2 bisacsh 
650 7 |a Elastic solids.  |2 fast  |0 (OCoLC)fst00904201 
650 7 |a Inhomogeneous materials.  |2 fast  |0 (OCoLC)fst00973445 
650 7 |a Wave-motion, Theory of.  |2 fast  |0 (OCoLC)fst01172888 
700 1 |a Engelbrecht, Jüri. 
700 1 |a Maugin, G. A.  |q (Gérard A.),  |d 1944- 
776 0 8 |i Print version:  |a Berezovski, Arkadi.  |t Numerical simulation of waves and fronts in inhomogeneous solids.  |d Singapore : World Scientific, ©2008  |w (DLC) 2008015670 
830 0 |a World Scientific series on nonlinear science.  |n Series A,  |p Monographs and treatises ;  |v v. 62. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521182  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686043 
938 |a Coutts Information Services  |b COUT  |n 9645833 
938 |a EBSCOhost  |b EBSC  |n 521182 
938 |a YBP Library Services  |b YANK  |n 9975220 
994 |a 92  |b IZTAP