Cargando…

A primer of infinitesimal analysis /

One of the most remarkable recent occurrences in mathematics is the refounding, on a rigorous basis, of the idea of infinitesimal quantity, a notion which played an important role in the early development of the calculus and mathematical analysis. In this new edition basic calculus, together with so...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bell, J. L. (John Lane)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, ©2008.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn316764804
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 090322s2008 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d CDX  |d IDEBK  |d OSU  |d E7B  |d REDDC  |d OCLCQ  |d OCLCF  |d YDXCP  |d OCLCQ  |d UAB  |d STF  |d OCLCQ  |d OL$  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 302061863  |a 316329577  |a 646780848  |a 957339573  |a 1035710123 
020 |a 9780511371431  |q (electronic bk.) 
020 |a 0511371438  |q (electronic bk.) 
020 |a 0511370962  |q (electronic bk.) 
020 |a 9780511370960  |q (electronic bk.) 
020 |a 9780521887182  |q (hardback) 
020 |a 0521887186  |q (hardback) 
020 |a 9780511369957  |q (ebook) 
020 |a 0511369956  |q (ebook) 
029 1 |a AU@  |b 000062558625 
029 1 |a CDX  |b 9530214 
029 1 |a HEBIS  |b 227515714 
035 |a (OCoLC)316764804  |z (OCoLC)302061863  |z (OCoLC)316329577  |z (OCoLC)646780848  |z (OCoLC)957339573  |z (OCoLC)1035710123 
050 4 |a QA299.82  |b .B45 2008eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |2 22 
049 |a UAMI 
100 1 |a Bell, J. L.  |q (John Lane) 
245 1 2 |a A primer of infinitesimal analysis /  |c John L. Bell. 
250 |a 2nd ed. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c ©2008. 
300 |a 1 online resource (xi, 124 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 121-122) and index. 
505 0 |a Basic features of smooth worlds -- Basic differential calculus -- The derivative of a function -- Stationary points of functions -- Areas under curves and the constancy principle -- The special functions -- First applications of the differential calculus -- Areas and volumes -- Volumes of revolution -- Arc length; surfaces of revolution; curvature -- Application to physics -- Moments of inertia -- Centres of mass -- Pappus' theorems -- Centres of pressure -- Stretching a spring -- Flexure of beams -- The catenary, the loaded chain, and the bollard-rope -- The Kepler-Newton areal law of motion under a central force -- Multivariable calculus and applications -- Partial derivatives -- Stationary values of functions -- Theory of surfaces. Spacetime metrics -- The heat equation -- The basic equations of hydrodynamics -- The wave equation -- The Cauchy-Riemann equations for complex functions -- The definite integral. Higher-order infinitesimals -- The definite integral -- Higher-order infinitesimals and Taylor's theorem -- The three natural microneighbourhoods of zero -- Synthetic differential geometry -- Tangent vectors and tangent spaces -- Vector fields -- Differentials and directional derivatives -- Smooth infinitesimal analysis as an axiomatic system -- Natural numbers in smooth worlds -- Nonstandard analysis. 
588 0 |a Print version record. 
520 |a One of the most remarkable recent occurrences in mathematics is the refounding, on a rigorous basis, of the idea of infinitesimal quantity, a notion which played an important role in the early development of the calculus and mathematical analysis. In this new edition basic calculus, together with some of its applications to simple physical problems, are presented through the use of a straightforward, rigorous, axiomatically formulated concept of 'zero-square', or 'nilpotent' infinitesimal - that is, a quantity so small that its square and all higher powers can be set, literally, to zero. The systematic employment of these infinitesimals reduces the differential calculus to simple algebra and, at the same time, restores to use the "infinitesimal" methods figuring in traditional applications of the calculus to physical problems - a number of which are discussed in this book. This edition also contains an expanded historical and philosophical introduction 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Nonstandard mathematical analysis. 
650 6 |a Analyse mathématique non standard. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Nonstandard mathematical analysis  |2 fast 
776 0 8 |i Print version:  |a Bell, J.L. (John Lane).  |t Primer of infinitesimal analysis.  |b 2nd ed.  |d Cambridge ; New York : Cambridge University Press, ©2008  |z 9780521887182  |z 0521887186  |w (DLC) 2007035724  |w (OCoLC)167516052 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259166  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 9530214 
938 |a ebrary  |b EBRY  |n ebr10265010 
938 |a EBSCOhost  |b EBSC  |n 259166 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 194443 
938 |a YBP Library Services  |b YANK  |n 2985367 
938 |a YBP Library Services  |b YANK  |n 3279365 
938 |a YBP Library Services  |b YANK  |n 2914299 
938 |a YBP Library Services  |b YANK  |n 2953224 
994 |a 92  |b IZTAP