|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn316568400 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
090320s1983 nyua ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e pn
|c OPELS
|d N$T
|d EBLCP
|d IDEBK
|d OPELS
|d E7B
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OPELS
|d OCLCF
|d DEBBG
|d OCLCQ
|d NLGGC
|d OCLCQ
|d COO
|d OCLCQ
|d DEBSZ
|d AGLDB
|d OCLCQ
|d VTS
|d STF
|d LEAUB
|d M8D
|d OCLCQ
|d SGP
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 646827856
|a 742295274
|a 816325160
|a 823122118
|a 823843531
|a 823912229
|a 824099304
|a 824154720
|
020 |
|
|
|a 9780123965608
|q (electronic bk.)
|
020 |
|
|
|a 0123965608
|q (electronic bk.)
|
020 |
|
|
|a 9780080956763
|q (electronic bk.)
|
020 |
|
|
|a 0080956769
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000048131085
|
029 |
1 |
|
|a CHNEW
|b 001008490
|
029 |
1 |
|
|a DEBBG
|b BV036962733
|
029 |
1 |
|
|a DEBBG
|b BV039834456
|
029 |
1 |
|
|a DEBBG
|b BV042317712
|
029 |
1 |
|
|a DEBBG
|b BV043043969
|
029 |
1 |
|
|a DEBSZ
|b 407393501
|
029 |
1 |
|
|a DEBSZ
|b 42194031X
|
029 |
1 |
|
|a DEBSZ
|b 482364289
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910110298905765
|
029 |
1 |
|
|a NZ1
|b 15193273
|
029 |
1 |
|
|a NZ1
|b 15906415
|
035 |
|
|
|a (OCoLC)316568400
|z (OCoLC)646827856
|z (OCoLC)742295274
|z (OCoLC)816325160
|z (OCoLC)823122118
|z (OCoLC)823843531
|z (OCoLC)823912229
|z (OCoLC)824099304
|z (OCoLC)824154720
|
050 |
|
4 |
|a QA324
|b .K36 1983eb
|
072 |
|
7 |
|a MAT
|x 037000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.7/223
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kanwal, Ram P.
|
245 |
1 |
0 |
|a Generalized functions :
|b theory and technique /
|c Ram P. Kanwal.
|
260 |
|
|
|a New York :
|b Academic Press,
|c 1983.
|
300 |
|
|
|a 1 online resource (xiii, 428 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics in science and engineering ;
|v v. 171
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Generalized Functions: Theory and Technique; Copyright Page; Contents; PREFACE; CHAPTER 1. THE DIRAC DELTA FUNCTION AND DELTA SEQUENCES; 1.1 The Heaviside Function; 1.2 The Dirac Delta Function; 1.3 The Delta Sequences; 1.4 A Unit Dipole; 1.5 The Heaviside Sequences; Exercises; CHAPTER 2. THE SCHWRTZ-SOBOLEV THEORY OF DISTRIBUTIONS; 2.1 Some Introductory Definitions; 2.2 Test Functions; 2.3 Linear Functionals and the Schwartz-Sobolev Theory of Distributions; 2.4 Examples; 2.5 Algebraic Operations on Distributions; 2.6 Analytic Operations on Distributions; 2.7 Examples
|
505 |
8 |
|
|a 2.8 The Support and Singular Support of a Distribution Exercises; CHAPTER 3. ADDITIONAL PROPERTIES OF DISTRIBUTIONS; 3.1 Transformation Properties of the Delta Distribution; 3.2 Convergence of Distributions; 3.3 Delta Sequences with Parametric Dependence; 3.4 Fourier Series; 3.5 Examples; 3.6 The Delta Function as a Stieltjes Integral; Exercises; CHAPTER 4. DISTRIBUTIONS DEFINED BY DIVERGENT INTEGRALS; 4.1 Introduction; 4.2 The Pseudofunction H(x)/xn, n = 1, 2, 3, . . .; 4.3 Functions with Algebraic Singularity of Order m; 4.4 Examples; Exercises
|
505 |
8 |
|
|a CHAPTER 5. DISTRIBUTIONAL DERIVATIVES OF FUNCTIONS WITH JUMP DISCONTINUITIES5.1 Distributional Derivatives in R1; 5.2 Rn, n = 2; Moving Surfaces of Discontinuity; 5.3 Surface Distributions; 5.4 Various Other Representations; 5.5 First-Order Distributional Derivatives; 5.6 Second-Order Distributional Derivatives; 5.7 Higher-Order Distributional Derivatives; 5.8 The Two-Dimensional Case; 5.9 Examples; CHAPTER 6. TEMPERED DISTRIBUTIONS AND THE FOURIER TRANSFORMS; 6.1 Preliminary Concepts; 6.2 Distributions of Slow Growth (Tempered Distributions); 6.3 The Fourier Transform; 6.4 Examples
|
505 |
8 |
|
|a ExercisesCHAPTER 7. DIRECT PRODUCTS AND CONVOLUTIONS OF DISTRIBUTIONS; 7.1 Definition of the Direct Product; 7.2 The Direct Product of Tempered Distributions; 7.3 The Fourier Transform of the Direct Product of Tempered Distributions; 7.4 The Convolution; 7.5 The Role of Convolution in the Regularization of the Distributions; 7.6 Examples; 7.7 The Fourier Transform of the Convolution; Exercises; CHAPTER 8. THE LAPLACE TRANSFORM; 8.1 A Brief Discussion of the Classical Results; 8.2 The Laplace Transform of Distributions
|
505 |
8 |
|
|a 8.3 The Laplace Transform of the Distributional Derivatives and Vice Versa8.4 Examples; Exercises; CHAPTER 9. APPLICATIONS TO ORDINARY DIFFERENTIAL EQUATIONS; 9.1 Ordinary Differential Operators; 9.2 Homogeneous Differential Equations; 9.3 Inhomogeneous Differential Equations: The Integral of a Distribution; 9.4 Examples; 9.5 Fundamental Solutions and Green's Functions; 9.6 Second-Order Differential Equations with Constant Coefficients; 9.7 Eigenvalue Problems; 9.8 Second-Order Differential Equations with Variable Coefficients; 9.9 Fourth-Order Differential Equations
|
520 |
|
|
|a Generalized functions : theory and technique.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Theory of distributions (Functional analysis)
|
650 |
|
6 |
|a Théorie des distributions (Analyse fonctionnelle)
|
650 |
|
7 |
|a MATHEMATICS
|x Functional Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Theory of distributions (Functional analysis)
|2 fast
|0 (OCoLC)fst01149672
|
776 |
0 |
8 |
|i Print version:
|a Kanwal, Ram P.
|t Generalized functions.
|d New York : Academic Press, 1983
|z 9780123965608
|w (DLC) 83002617
|w (OCoLC)10268198
|
830 |
|
0 |
|a Mathematics in science and engineering ;
|v v. 171.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297095
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL453033
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10329605
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 297095
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 228941
|
994 |
|
|
|a 92
|b IZTAP
|