|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn316566637 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
090320s1977 nyua ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e pn
|c OPELS
|d N$T
|d OCLCQ
|d EBLCP
|d IDEBK
|d TEF
|d E7B
|d OCLCQ
|d OPELS
|d OCLCQ
|d YDXCP
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCF
|d DEBBG
|d OCLCQ
|d NLGGC
|d OCLCQ
|d DEBSZ
|d AGLDB
|d OCLCQ
|d VTS
|d STF
|d LEAUB
|d M8D
|d OCLCQ
|d OCLCO
|d SGP
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 646827689
|
020 |
|
|
|a 9780122218606
|q (electronic bk.)
|
020 |
|
|
|a 0122218604
|q (electronic bk.)
|
020 |
|
|
|a 9780080956398
|q (electronic bk.)
|
020 |
|
|
|a 0080956394
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000048131158
|
029 |
1 |
|
|a AU@
|b 000051425999
|
029 |
1 |
|
|a CHNEW
|b 001008294
|
029 |
1 |
|
|a DEBBG
|b BV036962574
|
029 |
1 |
|
|a DEBBG
|b BV039834297
|
029 |
1 |
|
|a DEBBG
|b BV042317560
|
029 |
1 |
|
|a DEBBG
|b BV043045248
|
029 |
1 |
|
|a DEBSZ
|b 407391940
|
029 |
1 |
|
|a DEBSZ
|b 421940611
|
029 |
1 |
|
|a DEBSZ
|b 48236226X
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910110294105765
|
029 |
1 |
|
|a NZ1
|b 15193116
|
029 |
1 |
|
|a NZ1
|b 15906357
|
035 |
|
|
|a (OCoLC)316566637
|z (OCoLC)646827689
|
050 |
|
4 |
|a T57.83
|b .D74 1977eb
|
072 |
|
7 |
|a MAT
|x 017000
|2 bisacsh
|
082 |
0 |
4 |
|a 519.7/03
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Dreyfus, Stuart E.
|
245 |
1 |
4 |
|a The art and theory of dynamic programming /
|c Stuart E. Dreyfus, Averill M. Law.
|
260 |
|
|
|a New York :
|b Academic Press,
|c 1977.
|
300 |
|
|
|a 1 online resource (xv, 284 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics in science and engineering ;
|v 130
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; The Art and Theory of Dynamic Programming; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Elementary Path Problems; 1. Introduction; 2. A Simple Path Problem; 3. The Dynamic-Programming Solution; 4. Terminology; 5. Computational Efficiency; 6. Forward Dynamic Programming; 7. A More Complicated Example; 8. Solution of the Example; 9. The Consultant Question; 10. Stage and State; 11. The Doubling-Up Procedure; Chapter 2. Equipment Replacement; 1. The Simplest Model; 2. Dynamic-Programming Formulation; 3. Shortest-Path Representation of the Problem
|
505 |
8 |
|
|a 4. Regeneration Point Approach5. More Complex Equipment-Replacement Models; Chapter 3. Resource Allocation; 1. The Simplest Model; 2. Dynamic-Programming Formulation; 3. Numerical Solution; 4. Miscellaneous Remarks; 5. Unspecified Initial Resources; 6. Lagrange Multipliers; 7. Justification of the Procedure; 8. Geometric Interpretation of the Procedure; 9. Some Additional Cases; 10. More Than Two Constraints; Chapter 4. The General Shortest-Path Problem; 1. Introduction; 2. Acyclic Networks; 3. General Networks; References; Chapter 5. The Traveling-Salesman Problem; 1. Introduction
|
505 |
8 |
|
|a 2. Dynamic-Programming Formulation3. A Doubling-Up Procedure for the Case of Symmetric Distances; 4. Other Versions of the Traveling-Salesman Problem; Chapter 6. Problems with Linear Dynamics and Quadratic Criteria; 1. Introduction; 2. A Linear Dynamics, Quadratic Criterion Model; 3. A Particular Problem; 4. Dynamic-Programming Solution; 5. Specified Terminal Conditions; 6. A More General Optimal Value Function; Chapter 7. Discrete-Time Optimal-Control Problems; 1. Introduction; 2. A Necessary Condition for the Simplest Problem; 3. Discussion of the Necessary Condition
|
505 |
8 |
|
|a 4. The Multidimensional Problem5. The Gradient Method of Numerical Solution; Chapter 8. The Cargo-Loading Problem; 1. Introduction; 2. Algorithm 1; 3. Algorithm 2; 4. Algorithm 3; 5. Algorithm 4; References; Chapter 9. Stochastic Path Problems; 1. Introduction; 2. A Simple Problem; 3. What Constitutes a Solution?; 4. Numerical Solutions of Our Example; 5. A Third Control Philosophy; 6. A Stochastic Stopping-Time Problem; 7. Problems with Time-Lag or Delay; Chapter 10. Stochastic Equipment Inspection and Replacement Models; 1. Introduction; 2. Stochastic Equipment-Replacement Models
|
505 |
8 |
|
|a 3. An Inspection and Replacement ProblemChapter 11. Dynamic Inventory Systems; 1. The Nature of Inventory Systems; 2. Models with Zero Delivery Lag; 3. Models with Positive Delivery Lag; 4. A Model with Uncertain Delivery Lag; Chapter 12. Inventory Models with Special Cost Assumptions; 1. Introduction; 2. Convex and Concave Cost Functions; 3. Models with Deterministic Demand and Concave Costs; 4. Optimality of (s, S) Policies; 5. Optimality of Single Critical Number Policies; References; Chapter 13. Markovian Decision Processes; 1. Introduction; 2. Existence of an Optimal Policy
|
520 |
|
|
|a The art and theory of dynamic programming.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Dynamic programming.
|
650 |
|
6 |
|a Programmation dynamique.
|
650 |
|
7 |
|a MATHEMATICS
|x Linear & Nonlinear Programming.
|2 bisacsh
|
650 |
|
7 |
|a Dynamic programming.
|2 fast
|0 (OCoLC)fst00900291
|
650 |
|
7 |
|a Programacao Dinamica.
|2 larpcal
|
650 |
|
7 |
|a Programacao Estocastica.
|2 larpcal
|
700 |
1 |
|
|a Law, Averill M.
|
776 |
0 |
8 |
|i Print version:
|a Dreyfus, Stuart E.
|t Art and theory of dynamic programming.
|d New York : Academic Press, 1977
|z 9780122218606
|w (OCoLC)316566637
|
830 |
|
0 |
|a Mathematics in science and engineering ;
|v 130.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297023
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL452977
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10329523
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 297023
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3101836
|
994 |
|
|
|a 92
|b IZTAP
|