Cargando…

Invariant variational principles /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Logan, J. David (John David)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, 1977.
Colección:Mathematics in science and engineering ; v. 138.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn316563999
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 090320s1977 nyu ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d N$T  |d EBLCP  |d IDEBK  |d TEF  |d E7B  |d OCLCQ  |d OPELS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d DEBBG  |d OCLCQ  |d YDXCP  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d LEAUB  |d M8D  |d OCLCQ  |d K6U  |d OCLCO  |d SGP  |d OCLCQ 
019 |a 646827458  |a 823843554  |a 823912260  |a 824099327  |a 824154745 
020 |a 9780124547506  |q (electronic bk.) 
020 |a 0124547508  |q (electronic bk.) 
020 |a 9780080956473  |q (electronic bk.) 
020 |a 0080956475  |q (electronic bk.) 
020 |a 1282289675 
020 |a 9781282289673 
029 1 |a AU@  |b 000048129429 
029 1 |a AU@  |b 000051557596 
029 1 |a CHNEW  |b 001008209 
029 1 |a DEBBG  |b BV036962524 
029 1 |a DEBBG  |b BV039834247 
029 1 |a DEBBG  |b BV042317515 
029 1 |a DEBBG  |b BV043045113 
029 1 |a DEBSZ  |b 407391444 
029 1 |a DEBSZ  |b 421940107 
029 1 |a DEBSZ  |b 482361387 
029 1 |a DKDLA  |b 820120-katalog:9910110220305765 
029 1 |a NZ1  |b 15193065 
029 1 |a NZ1  |b 15906348 
035 |a (OCoLC)316563999  |z (OCoLC)646827458  |z (OCoLC)823843554  |z (OCoLC)823912260  |z (OCoLC)824099327  |z (OCoLC)824154745 
050 4 |a QA316  |b .L76 1977eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a GPF  |2 bicssc 
082 0 4 |a 515/.64  |2 22 
049 |a UAMI 
100 1 |a Logan, J. David  |q (John David) 
245 1 0 |a Invariant variational principles /  |c John David Logan. 
260 |a New York :  |b Academic Press,  |c 1977. 
300 |a 1 online resource (xv, 172 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v v. 138 
504 |a Includes bibliographical references (pages 165-168) and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Invariant Variational Principles; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Necessary Conditions for an Extremum; 1.1 Introduction; 1.2 Variation of Functionals; 1.3 Single Integral Problems; 1.4 Applications to Classical Dynamics; 1.5 Multiple Integral Problems; 1.6 Invariance-A Preview; 1.7 Bibliographic Notes; Exercises; Chapter 2. Invariance of Single Integrals; 2.1 r-Parameter Transformations; 2.2 Invariance Definitions; 2.3 The Fundamental Invariance Identities; 2.4 The Noether Theorem and Conservation Laws; 2.5 Particle Mechanics and the Galilean Group 
505 8 |a 2.6 Bibliographic NotesExercises; Chapter 3. Generalized Killing Equations; 3.1 Introduction; 3.2 Example-The Emden Equation; 3.3 Killing's Equations; 3.4 The Damped Harmonic Oscillator; 3.5 The Inverse Problem; Exercises; Chapter 4. Invariance of Multiple Integrals; 4.1 Basic Definitions; 4.2 The Fundamental Theorems; 4.3 Derivation of the Invariance Identities; 4.4 Conservation Theorems; Exercises; Chapter 5. Invariance Principles in the Theory of Physical Fields; 5.1 Introduction; 5.2 Tensors; 5.3 The Lorentz Group; 5.4 Infinitesimal Lorentz Transformations; 5.5 Physical Fields 
505 8 |a 5.6 Scalar Fields5.7 The Electromagnetic Field; 5.8 Covariant Vector Fields; Exercises; Chapter 6. Second-Order Variation Problems; 6.1 The Euler-Lagrange Equations; 6.2 Invariance Criteria for Single Integrals; 6.3 Multiple Integrals; 6.4 The Korteweg-devries Equation; 6.5 Bibliographic Notes; Exercises; Chapter 7. Conformally Invariant Problems; 7.1 Conformal Transformations; 7.2 Conformal Invariance Identities for Scalar Fields; 7.3 Conformal Conservation Laws; 7.4 Conformal Covariance; Exercises; Chapter 8. Parameter-Invariant Problems; 8.1 Introduction 
505 8 |a 8.2 Sufficient Conditions for Parameter-Invariance8.3 The Conditions of Zermelo and Weierstrass; 8.4 The Second Noether Theorem; Exercises; References; Index 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Calculus of variations. 
650 0 |a Invariants. 
650 0 |a Transformations (Mathematics) 
650 6 |a Calcul des variations. 
650 6 |a Invariants. 
650 6 |a Transformations (Mathématiques) 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Calculus of variations.  |2 fast  |0 (OCoLC)fst00844140 
650 7 |a Invariants.  |2 fast  |0 (OCoLC)fst00977982 
650 7 |a Transformations (Mathematics)  |2 fast  |0 (OCoLC)fst01154653 
776 0 8 |i Print version:  |a Logan, J. David (John David).  |t Invariant variational principles.  |d New York : Academic Press, 1977  |z 9780124547506  |w (DLC) 76052727  |w (OCoLC)2982901 
830 0 |a Mathematics in science and engineering ;  |v v. 138. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297119  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL453070 
938 |a ebrary  |b EBRY  |n ebr10329409 
938 |a EBSCOhost  |b EBSC  |n 297119 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 228967 
938 |a YBP Library Services  |b YANK  |n 3101842 
994 |a 92  |b IZTAP