|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn316552945 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
090320s1972 nyua ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e pn
|c OPELS
|d N$T
|d EBLCP
|d IDEBK
|d OCLCQ
|d TEF
|d OPELS
|d OCLCQ
|d OCLCO
|d OCLCQ
|d E7B
|d OCLCF
|d DEBBG
|d OCLCQ
|d NLGGC
|d YDXCP
|d OCLCQ
|d DEBSZ
|d AGLDB
|d OCLCQ
|d VTS
|d STF
|d LEAUB
|d M8D
|d OCLCQ
|d OCLCO
|d SGP
|d OCLCQ
|
019 |
|
|
|a 646827719
|a 823843621
|a 823912383
|a 824099392
|a 824154815
|
020 |
|
|
|a 9780124495500
|q (electronic bk.)
|
020 |
|
|
|a 0124495508
|q (electronic bk.)
|
020 |
|
|
|a 9780080956022
|q (electronic bk.)
|
020 |
|
|
|a 0080956025
|q (electronic bk.)
|
020 |
|
|
|a 1282290398
|
020 |
|
|
|a 9781282290396
|
029 |
1 |
|
|a AU@
|b 000048130977
|
029 |
1 |
|
|a AU@
|b 000051555199
|
029 |
1 |
|
|a CHNEW
|b 001008113
|
029 |
1 |
|
|a DEBBG
|b BV036962445
|
029 |
1 |
|
|a DEBBG
|b BV039834168
|
029 |
1 |
|
|a DEBBG
|b BV042317448
|
029 |
1 |
|
|a DEBBG
|b BV043044523
|
029 |
1 |
|
|a DEBSZ
|b 407390685
|
029 |
1 |
|
|a DEBSZ
|b 421940115
|
029 |
1 |
|
|a DEBSZ
|b 482360224
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910110434705765
|
029 |
1 |
|
|a NZ1
|b 15192984
|
029 |
1 |
|
|a NZ1
|b 15906326
|
035 |
|
|
|a (OCoLC)316552945
|z (OCoLC)646827719
|z (OCoLC)823843621
|z (OCoLC)823912383
|z (OCoLC)824099392
|z (OCoLC)824154815
|
050 |
|
4 |
|a QA374
|b .L45 1972eb
|
072 |
|
7 |
|a MAT
|x 007020
|2 bisacsh
|
072 |
|
7 |
|a GPF
|2 bicssc
|
082 |
0 |
4 |
|a 515/.353
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lieberstein, H. Melvin.
|
245 |
1 |
0 |
|a Theory of partial differential equations /
|c H. Melvin Lieberstein.
|
260 |
|
|
|a New York :
|b Academic Press,
|c 1972.
|
300 |
|
|
|a 1 online resource (xiv, 283 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics in science and engineering ;
|v v. 93
|
504 |
|
|
|a Includes bibliographical references (pages 264-266) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Theory of partial differential equations.
|
505 |
0 |
|
|a Front Cover; Theory of Partial Differential Equations; Copyright Page; Contents; PREFACE; PART I: AN OUTLINE; Chapter 1. The Theory of Characteristics, Classification, and the Wave Equation in E2; 1. D' Alembert Solution of the Cauchy Problem for the Homogeneous Wave Equation in E2; 2. Nomenclature; 3. Theory of Characteristics and Type Classification for Equations in E2; 4. Considerations Special to Nonlinear Cases; 5. Compatibility Relations and the Finite-Difference Method of Characteristics; 6. Systems Larger Than Two by Two; 7. Flow and Transmission Line Equations
|
505 |
8 |
|
|a Chapter 2. Various Boundary-Value Problems for the Homogeneous Wave Equation in E21. The Cauchy or Initial-Value Problem; 2. The Characteristic Boundary-Value Problem; 3. The Mixed Boundary-Value Problem; 4. The Goursat Problem; 5. The Vibrating String Problem; 6. Uniqueness of the Vibrating String Problem; 7. The Dirichlet Problem for the Wave Equation?; Chapter 3. Various Boundary-Value Problems for the Laplace Equation in E2; 1. The Dirichlet Problem; 2. Relation to Analytic Functions of a Complex Variable; 3. Solution of the Dirichlet Problem on a Circle
|
505 |
8 |
|
|a 4. Uniqueness for Regular Solutions of the Dirichlet and Neumann Problem on a Rectangle5. Approximation Methods for the Dirichlet Problem in E2; 6. The Cauchy Problem for the Laplace Equation; Chapter 4. Various Boundary-Value Problems for Simple Equations of Parabolic Type; 1. The Slab Problem; 2. An Alternative Proof of Uniqueness; 3. Solution by Separation of Variables; 4. Instability for Negative Times; 5. Cauchy Problem on the Infinite Line; 6. Unique Continuation; 7. Poiseuille Flow; 8. Mean-Square Asymptotic Uniqueness
|
505 |
8 |
|
|a 9. Solution of a Dirichlet Problem for an Equation of Parabolic TypeChapter 5. Expectations for Well-Posed Problems; 1. Sense of Hadamard; 2. Expectations; 3. Boundary-Value Problems for Equations of Elliptic-Parabolic Type; 4. Existence as the Limit of Regular Solutions; 5. The Impulse Problem as a Prototype of a Solution in Terms of Distributions; 6. The Green Identities; 7. The Generalized Green Identity; 8. Lp-Weak Solutions; 9. Prospectus; 10. The Tricomi Problem; PART II: SOME CLASSICAL RESULTS FOR NONLINEAR EQUATIONS IN TWO INDEPENDENT VARIABLES
|
505 |
8 |
|
|a Chapter 6. Existence and Uniqueness Considerations for the Nonhomogeneous Wave Equation in E21. Notation; 2. Existence for the Characteristic Problem; 3. Comments on Continuous Dependence and Error Bounds; 4. An Example Where the Theorem as Stated Does Not Apply; 5. A Theorem Using the Lipschitz Condition on a Bounded Region in E5; 6. Existence Theorem for the Cauchy Problem of the Nonhomogeneous (Nonlinear) Wave Equation in E2; Chapter 7. The Riemann Method; 1. Three Forms of the Generalized Green Identity; 2. Riemann's Function
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Differential equations, Partial.
|
650 |
|
6 |
|a Équations aux dérivées partielles.
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Partial.
|2 fast
|0 (OCoLC)fst00893484
|
776 |
0 |
8 |
|i Print version:
|a Lieberstein, H. Melvin.
|t Theory of partial differential equations.
|d New York, Academic Press, 1972
|z 9780124495500
|w (DLC) 72084278
|w (OCoLC)482715
|
830 |
|
0 |
|a Mathematics in science and engineering ;
|v v. 93.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297117
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL453064
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10329538
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 297117
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 229039
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3101813
|
994 |
|
|
|a 92
|b IZTAP
|