Cargando…

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn316552943
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 090320s1972 nyua ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d N$T  |d OCLCQ  |d EBLCP  |d IDEBK  |d OCLCQ  |d TEF  |d OPELS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d DEBBG  |d OCLCQ  |d NLGGC  |d E7B  |d DEBSZ  |d OCLCQ  |d AGLDB  |d LIP  |d OCLCQ  |d VTS  |d STF  |d LEAUB  |d M8D  |d OCLCQ  |d OCLCO  |d SGP  |d OCLCQ  |d OCL  |d OCLCO 
019 |a 646827393  |a 823843578  |a 823912310  |a 824099350  |a 824154770 
020 |a 9780120934508  |q (electronic bk.) 
020 |a 0120934507  |q (electronic bk.) 
020 |a 9780080956008  |q (electronic bk.) 
020 |a 0080956009  |q (electronic bk.) 
020 |a 1282289918 
020 |a 9781282289918 
029 1 |a AU@  |b 000048131231 
029 1 |a AU@  |b 000051554716 
029 1 |a CHNEW  |b 001008112 
029 1 |a DEBBG  |b BV036962444 
029 1 |a DEBBG  |b BV039834167 
029 1 |a DEBBG  |b BV042317447 
029 1 |a DEBBG  |b BV043044515 
029 1 |a DEBSZ  |b 407390677 
029 1 |a DEBSZ  |b 421940786 
029 1 |a DEBSZ  |b 449157318 
029 1 |a DEBSZ  |b 482360216 
029 1 |a DKDLA  |b 820120-katalog:9910110428505765 
029 1 |a NZ1  |b 15192983 
029 1 |a NZ1  |b 15906325 
035 |a (OCoLC)316552943  |z (OCoLC)646827393  |z (OCoLC)823843578  |z (OCoLC)823912310  |z (OCoLC)824099350  |z (OCoLC)824154770 
050 4 |a T57.83  |b .B47 1972eb 
072 7 |a MAT  |x 017000  |2 bisacsh 
072 7 |a GPF  |2 bicssc 
082 0 4 |a 519.7/03  |2 22 
049 |a UAMI 
100 1 |a Bertelè, Umberto. 
245 1 0 |a Nonserial dynamic programming /  |c Umberto Bertelè and Francesco Brioschi. 
260 |a New York :  |b Academic Press,  |c 1972. 
300 |a 1 online resource (xii, 235 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v v. 91 
504 |a Includes bibliographical references (pages 229-232) and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Nonserial Dynamic Programming; Copyright Page; Table of Contents; Preface; Acknowledgments; Chapter 1. Nonserial Problems; 1.1 Introduction; 1.2 The Serial Unconstrained Problem; 1.3 A Problem in Inventory Theory; 1.4 The Nonserial Unconstrained Problem and Its Graph-Theoretical Representation; 1.5 A Problem in Pattern Recognition; 1.6 A Problem in Traffic Control; 1.7 The Parametric Unconstrained Problem; 1.8 The Constrained Problem; 1.9 Introduction to Nonserial Dynamic Programming and Plan of the Book 
505 8 |a Chapter 2. The Elimination of Variables One by One: Description of the Procedure2.1 Introduction; 2.2 Serial Dynamic Programming; 2.3 Nonserial Dynamic Programming: The Description of the Solution of the Primary Problem; 2.4 An Example; 2.5 The Secondary Optimization Problem; 2.6 The Elimination Process; 2.7 Criterion Functions; 2.8 The Final Theorem and Other Dominance Relations among Elimination Orderings; 2.9 The Correspondence Theorem; 2.10 The Parametric Unconstrained Problem; Chapter 3. The Elimination of Variables One by One: Properties and Algorithms; 3.1 Introduction 
505 8 |a 3.2 Heuristic Algorithms3.3 Optimal Path Algorithms; 3.4 Computational Implications of the Final Theorem; 3.5 Further Dominance Relations among Elimination Orderings; 3.6 The Descendance Theorem; 3.7 The Initial Theorem; 3.8 The Separating Set Theorem; 3.9 Connections between Structure and Dimension in a Graph; 3.10 Upper and Lower Bounds to the Dimension; 3.11 A Branch and Bound Algorithm; Chapter 4. The Elimination of Variables in Blocks; 4.1 Introduction; 4.2 The Description of the Procedure for the Solution of the Primary Problem; 4.3 An Example; 4.4 The Secondary Optimization Problem 
505 8 |a 4.5 The Block Elimination Process4.6 Some General Properties; 4.7 The Final Theorem; 4.8 The Descendance, Initial, and Separating Set Theorems; 4.9 Bounds and Algorithms: Some Hints; 4.10 The Correspondence Theorem; 4.11 The Parametric Unconstrained ProbIem; 4.12 Concluding Remarks; Chapter 5. Multilevel Elimination Procedures; 5.1 Introduction; 5.2 Multilevel Elimination Procedures for the Solution of the Primary Problem; 5.3 An Example; 5.4 The Secondary Optimization Problem; 5.5 The Multilevel Elimination Process; 5.6 The Final Theorem; 5.7 Some General Properties 
505 8 |a 5.8 Heuristic Algorithms: Some Hints5.9 The Correspondence Theorem; Chapter 6. Constrained Problems; 6.1 Introduction; 6.2 A Penalty Function Approach; 6.3 The Elimination of Variables One by One: Description of the Procedure; 6.4 An Example; 6.5 The Secondary Optimization Problem; 6.6 Univocal Constraints; 6.7 An Example; 6.8 Dynamic Systems and Other Applications : The Block Diagram Representation; 6.9 An Example; 6.10 A Discussion about Possible Improvements of the Optimization Procedures in Some Special Cases; 6.11 An Allocation Problem; Appendix A: Review of Graph Theory; List of Symbols 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Dynamic programming. 
650 0 |a Programming (Mathematics) 
650 0 |a Mathematical optimization. 
650 6 |a Programmation (Mathématiques) 
650 6 |a Optimisation mathématique. 
650 6 |a Programmation dynamique. 
650 7 |a MATHEMATICS  |x Linear & Nonlinear Programming.  |2 bisacsh 
650 7 |a Programming (Mathematics)  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Dynamic programming  |2 fast 
700 1 |a Brioschi, Francesco,  |d 1938- 
776 0 8 |i Print version:  |a Bertelè, Umberto.  |t Nonserial dynamic programming.  |d New York : Academic Press, 1972  |z 0120934507  |z 9780120934508  |w (DLC) 78187237  |w (OCoLC)496941 
830 0 |a Mathematics in science and engineering ;  |v v. 91. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297006  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL452940 
938 |a ebrary  |b EBRY  |n ebr10329376 
938 |a EBSCOhost  |b EBSC  |n 297006 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 228991 
994 |a 92  |b IZTAP