The large sieve and its applications : arithmetic geometry, random walks and discrete groups /
Among the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of appl...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
©2008.
|
Colección: | Cambridge tracts in mathematics ;
175. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 2. The principle of the large sieve
- 3. Group and conjugacy sieves
- 4. Elementary and classical examples
- 5. Degrees of representations of finite groups
- 6. Probabilistic sieves
- 7. Sieving in discrete groups
- 8. Sieving for Frobenius over finite fields
- App. A. Small sieves
- App. B. Local density computations over finite fields
- App. C. Representation theory
- App. D. Property (T) and Property ([tau])
- App. E. Linear algebraic groups
- App. F. Probability theory and random walks
- App. G. Sums of multiplicative functions
- App. H. Topology.