|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn314216971 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr zn||||||||| |
008 |
040802s2004 enk ob 001 0 eng d |
010 |
|
|
|z 2004301771
|
040 |
|
|
|a CN8ML
|b eng
|e pn
|c CN8ML
|d OCLCQ
|d N$T
|d E7B
|d OCLCQ
|d IDEBK
|d MERUC
|d OCLCQ
|d OCLCF
|d OCLCO
|d YDXCP
|d EBLCP
|d DEBSZ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d AGLDB
|d OTZ
|d OCLCQ
|d JG0
|d OCLCQ
|d CUY
|d LOA
|d COCUF
|d ICG
|d K6U
|d ZCU
|d STF
|d WRM
|d OCLCQ
|d VTS
|d CEF
|d OCLCQ
|d VT2
|d U3W
|d AU@
|d LHU
|d FVL
|d OCLCQ
|d WYU
|d LVT
|d YOU
|d S9I
|d TKN
|d BRX
|d W2U
|d DKC
|d OCLCQ
|d CNTRU
|d MT4IT
|d UX1
|d UWK
|d ADU
|d SFB
|d ESU
|d UKCRE
|d VLY
|d CN6UV
|d DGN
|d AJS
|d DKU
|d SDF
|d HS0
|d CNNOR
|d CNKUC
|d TUHNV
|d QGK
|d OCLCQ
|d OCLCO
|d MHW
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
015 |
|
|
|a GBA4Y1057
|2 bnb
|
015 |
|
|
|a GBA4-Y1057
|
019 |
|
|
|a 316719735
|a 455959151
|a 476257427
|a 646784817
|a 756878939
|a 1030820230
|a 1030844577
|a 1033543635
|a 1044945920
|a 1100564480
|a 1119044239
|a 1162014861
|a 1241804617
|a 1243581755
|a 1257368755
|a 1290109274
|a 1300470820
|
020 |
|
|
|a 9780191523953
|q (electronic bk.)
|
020 |
|
|
|a 019152395X
|q (electronic bk.)
|
020 |
|
|
|z 0198530846
|q (Cloth)
|
020 |
|
|
|a 1280845228
|
020 |
|
|
|a 9781280845222
|
029 |
1 |
|
|a AU@
|b 000051584140
|
029 |
1 |
|
|a AU@
|b 000062586585
|
029 |
1 |
|
|a DEBBG
|b BV043126773
|
029 |
1 |
|
|a DEBSZ
|b 42202063X
|
029 |
1 |
|
|a DEBSZ
|b 430714270
|
029 |
1 |
|
|a GBVCP
|b 802802273
|
035 |
|
|
|a (OCoLC)314216971
|z (OCoLC)316719735
|z (OCoLC)455959151
|z (OCoLC)476257427
|z (OCoLC)646784817
|z (OCoLC)756878939
|z (OCoLC)1030820230
|z (OCoLC)1030844577
|z (OCoLC)1033543635
|z (OCoLC)1044945920
|z (OCoLC)1100564480
|z (OCoLC)1119044239
|z (OCoLC)1162014861
|z (OCoLC)1241804617
|z (OCoLC)1243581755
|z (OCoLC)1257368755
|z (OCoLC)1290109274
|z (OCoLC)1300470820
|
050 |
|
4 |
|a QA911
|b .N69 2004eb
|
055 |
1 |
3 |
|a QA911
|b .N69 2004eb
|
072 |
|
7 |
|a TEC
|x 021000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1/064/015118
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Novotný, A.
|
245 |
1 |
0 |
|a Introduction to the mathematical theory of compressible flow /
|c A. Novotný, I. Straéskraba.
|
260 |
|
|
|a Oxford ;
|a New York :
|b Oxford University Press,
|c 2004.
|
300 |
|
|
|a 1 online resource (xx, 506 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a Oxford lecture series in mathematics and its applications ;
|v 27
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This book provides a rapid introduction to the mathematical theory of compressible flow, giving a comprehensive account of the field and all important results up to the present day. The book is written in a clear, instructive and self-contained manner and will be accessible to a wide audience. - ;This book provides a comprehensive introduction to the mathematical theory of compressible flow, describing both inviscid and viscous compressible flow, which are governed by the Euler and the Navier-Stokes equations respectively. The method of presentation allows readers with different backgrounds to.
|
505 |
0 |
|
|a 1 Fundamental concepts and equations -- 1.1 Some mathematical concepts and notation -- 1.1.1 Basic notation -- 1.1.2 Some useful inequalities in IR[sup(N)] -- 1.1.3 Differential operators -- 1.1.4 Gronwall's lemma -- 1.1.5 Implicit functions -- 1.1.6 Transformations of Cartesian coordinates -- 1.1.7 Hölder-continuous and Lipschitz functions -- 1.1.8 The symbols "o" and "O" -- 1.1.9 Partitions of unity -- 1.1.10 Measure -- 1.1.11 Description of the boundary -- 1.1.12 Measure on the boundary of a domain -- 1.1.13 Classical Green's theorem -- 1.1.14 Lebesgue spaces.
|
505 |
8 |
|
|a 1.1.15 Lebesgue's points -- 1.1.16 Absolutely continuous functions -- 1.1.17 Absolute continuity of integrals with respect to measurable subsets -- 1.1.18 Some theorems from integration theory -- 1.2 Governing equations and relations of gas dynamics -- 1.2.1 Description of the flow -- 1.2.2 The transport theorem -- 1.2.3 The continuity equation -- 1.2.4 The equations of motion -- 1.2.5 The law of conservation of the moment of momentum. Symmetry of the stress tensor -- 1.2.6 Inviscid and viscous fluids -- 1.2.7 The energy equation -- 1.2.8 The second law of thermodynamics and the entropy.
|
505 |
8 |
|
|a 1.2.9 Principle of material frame indifference -- 1.2.10 Newtonian fluids -- 1.2.11 Conservative and dissipation form of the energy equation for Newtonian fluids -- 1.2.12 Entropy form of the energy equation for Newtonian fluids -- 1.2.13 Some consequences of the Clausius-Duhem inequality -- 1.2.14 Equations of state -- 1.2.15 Adiabatic flow of a perfect inviscid gas -- 1.2.16 Compressible Euler equations -- 1.2.17 Compressible Navier-Stokes equations for a perfect viscous gas -- 1.2.18 Barotropic flow of a viscous gas -- 1.2.19 Speed of sound -- 1.2.20 Simplified models.
|
505 |
8 |
|
|a 1.2.21 Initial and boundary conditions -- 1.3 Some advanced mathematical concepts and results -- 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](])* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results.
|
505 |
8 |
|
|a 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Fluid dynamics
|x Mathematical models.
|
650 |
|
0 |
|a Compressibility.
|
650 |
|
6 |
|a Dynamique des fluides
|x Modèles mathématiques.
|
650 |
|
6 |
|a Compressibilité.
|
650 |
|
7 |
|a compressibility.
|2 aat
|
650 |
|
7 |
|a compression.
|2 aat
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Material Science.
|2 bisacsh
|
650 |
|
7 |
|a Compressibility
|2 fast
|
650 |
|
7 |
|a Fluid dynamics
|x Mathematical models
|2 fast
|
700 |
1 |
|
|a Straéskraba, I.
|q (Ivan)
|
776 |
0 |
8 |
|i Print version:
|a Novotný, A.
|t Introduction to the mathematical theory of compressible flow.
|d Oxford ; New York : Oxford University Press, 2004
|w (DLC) 2004301771
|
830 |
|
0 |
|a Oxford lecture series in mathematics and its applications ;
|v 27.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=264886
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 2.2.15 Quasilinear system -- 2.2.16 Local existence for a quasilinear system -- 2.2.17 Second grade approximations -- 2.2.18 Higher order energy estimates -- 2.2.19 Convergence of approximations -- 2.2.20 Uniqueness -- 2.2.21 Local existence for equations of an isentropic ideal gas -- 2.2.22 Existence of global smooth solutions for nonlinear hyperbolic systems -- 2.2.23 2 × 2 system of conservation laws, Riemann invariants -- 2.2.24 Plane wave solutions -- 2.2.25 Plane waves for the Euler system in 2D -- 2.3 Weak solutions -- 2.3.1 Blow up of classical solutions -- 2.3.2 Generalized formulation for systems of conservation laws -- 2.3.3 Piecewise smooth solutions -- 2.3.4 Entropy condition -- 2.3.5 Physical entropy -- 2.3.6 General parabolic approximation and the entropy condition -- 2.3.7 Entropy for a general scalar conservation law -- 2.3.8 Entropy for a 2 × 2 system of conservation laws in 1D -- 2.3.9 Entropy function for a p-system -- 2.3.10 Riemann problem -- 2.3.11 Riemann problem for 2 × 2 isentropic gas dynamics equations -- 2.3.12 Existence and uniqueness of admissible weak solution for a scalar conservation law -- 2.3.13 Plane waves admitting discontinuities -- 2.3.14 Existence of solutions to the 2 × 2 Euler system for an isentropic gas -- 2.3.15 Lax-Friedrichs difference approximations -- 2.3.16 Existence of approximations -- 2.3.17 Invariant regions for Riemann invariants -- 2.3.18 Compactness argument -- 2.3.19 Characterization of the weak limit by Young measure -- 2.3.20 Div-curl lemma and Tartar's commutation relation -- 2.3.21 Existence of weak entropy-entropy flux pairs -- 2.3.22 Localization of supp ν -- 2.3.23 Approximative limit is an admissible solution -- 2.3.24 Global existence for general systems in one dimension -- 2.4 Final comments -- 2.4.1 Local existence results -- 2.4.2 Global smooth solutions.
|
880 |
8 |
|
|6 505-00/(S
|a 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](Ω)* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results -- 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation -- 2.1.2 One-dimensional Euler equations -- 2.1.3 Lagrangian mass coordinates -- 2.1.4 Symmetrizable systems -- 2.1.5 Matrix form of the p-system -- 2.1.6 The Euler equations of an inviscid gas -- 2.2 Existence of smooth solutions -- 2.2.1 Hyperbolic systems and characteristics -- 2.2.2 Cauchy problem for system of conservation laws -- 2.2.3 Linear scalar equation -- 2.2.4 Solution of a linear system -- 2.2.5 Nonlinear scalar equation -- 2.2.6 Piston problem -- 2.2.7 Complementary Riemann invariants -- 2.2.8 Solution of the piston problem -- 2.2.9 Cauchy problem for a symmetric hyperbolic system -- 2.2.10 Approximations -- 2.2.11 Existence of approximations -- 2.2.12 Energy estimate -- 2.2.13 Convergence of approximations to a generalized solution -- 2.2.14 Regularity of the generalized solution.
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2952311
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 84522
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 264886
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10266459
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL422482
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7033486
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 20450393
|
994 |
|
|
|a 92
|b IZTAP
|