Cargando…

Optical trapping and manipulation of neutral particles using lasers /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ashkin, Arthur, 1922-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, NJ : World Scientific, ©2006.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn305127486
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 011029s2006 njua ob 000 0 eng d
010 |a  2007298004 
040 |a CaPaEBR  |b eng  |e pn  |c COCUF  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d OCLCQ  |d MERUC  |d CCO  |d E7B  |d STF  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d JBG  |d OCLCQ  |d U3W  |d WRM  |d VTS  |d NRAMU  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d M8D  |d UKAHL  |d HS0  |d UWK  |d OCLCQ  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO 
019 |a 181645647  |a 560447656  |a 647683567  |a 961526547  |a 962671550  |a 988523395  |a 992087475  |a 1037782611  |a 1038634860  |a 1045471145  |a 1055390633  |a 1065084154  |a 1081219442  |a 1109264682  |a 1110292098  |a 1228574101 
020 |a 9812774890  |q (electronic bk.) 
020 |a 9789812774897  |q (electronic bk.) 
020 |a 1281927856 
020 |a 9781281927859 
020 |a 9786611927851 
020 |a 6611927859 
020 |z 9810240570 
020 |z 9789810240578 
020 |z 9789812774897 
020 |z 9810240589 
020 |z 9789810240585 
029 1 |a AU@  |b 000051399920 
029 1 |a DEBBG  |b BV043141489 
029 1 |a DEBSZ  |b 422165727 
029 1 |a GBVCP  |b 802779603 
029 1 |a NZ1  |b 13069440 
035 |a (OCoLC)305127486  |z (OCoLC)181645647  |z (OCoLC)560447656  |z (OCoLC)647683567  |z (OCoLC)961526547  |z (OCoLC)962671550  |z (OCoLC)988523395  |z (OCoLC)992087475  |z (OCoLC)1037782611  |z (OCoLC)1038634860  |z (OCoLC)1045471145  |z (OCoLC)1055390633  |z (OCoLC)1065084154  |z (OCoLC)1081219442  |z (OCoLC)1109264682  |z (OCoLC)1110292098  |z (OCoLC)1228574101 
050 4 |a QC689.5.L35  |b A84 2006eb 
072 7 |a SCI  |x 051000  |2 bisacsh 
072 7 |a SCI  |x 074000  |2 bisacsh 
082 0 4 |a 539.7  |2 22 
049 |a UAMI 
100 1 |a Ashkin, Arthur,  |d 1922- 
245 1 0 |a Optical trapping and manipulation of neutral particles using lasers /  |c Arthur Ashkin. 
260 |a Hackensack, NJ :  |b World Scientific,  |c ©2006. 
300 |a 1 online resource (xxiv, 915 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
505 0 |a Preface -- I. Introduction. ch. 1. Beginnings. 1.1. Radiation pressure using microwave magnetrons. 1.2. Runners and bouncers. 1.3. Back of the envelope calculation of laser radiation pressure. 1.4. First observation of laser radiation pressure. 1.5. Observation of the first three-dimensional all-optical trap. 1.6. Scattering force on atoms. 1.7. Saturation of the scattering force on atoms. 1.8. Gradient (dipole) force on atoms. 1.9. Dispersive properties of the dipole force on atoms. 1.10. Applications of the scattering force. 1.11. "It's not even wrong!" 1.12. Optical traps and the prepared mind -- II. 1969-1979. ch. 2. Optical levitation. 2.1. Levitation in air. 2.2. Scientific American article of 1973. 2.3. Levitation with TEM[symbol]* donut mode beams. 2.4. Levitation of liquid drops. 2.5. Radiometric or thermal forces. 2.6. Levitation at reduced air pressure. 2.7. Feedback damping of levitated particles and automatic force measurement. 2.8. Feedback measurement of axial scattering force. 2.9. Feedback force measurement of high-Q surface wave resonances. 2.10. Measurement of electric forces by feedback control of levitated particles. ch. 3. Atom trapping and manipulation by radiation pressure forces. 3.1. Early concepts and experiments with atoms. 3.2. Theoretical aspects of optical forces on atoms. ch. 4. Summary of the first decade's work on optical trapping and manipulation of particles -- III. 1980-1990. ch. 5. Trapping of atoms and biological particles in the 1980-1990 decade. 5.1. Optical trapping and cooling of neutral atoms in the decade 1980-1990. 5.2. Trapping of biological particles -- IV. 1990-2006. IVA. Biological applications. ch. 6. General biological applications. 6.1. Application of tweezers to the study of bacteria. 6.2. Use of UV cutting plus tweezers to study cell fusion and chromosomes. 6.3. Tweezer manipulation of live sperm and application to In Vitro fertilization. 6.4. Tweezer study of the immune response of T-lymphocytes. 6.5. Adhesion of influenza virus to red blood cells using OPTCOL technique. 6.6. Mechanical properties of membranes studied by tether formation using tweezers. 6.7. Deformation of single cells by light forces. 6.8. Artificial gravity in plants. 6.9. Guiding of neuronal growth with light. 6.10. Self-rotation of red blood cells in optical tweezers. ch. 7. Use of optical tweezers to study single motor molecules. 7.1. In Vivo force measurement of Dynein in giant amoeba Reticulomyxa. 7.2. Measurement of the force produced by kinesin. 7.3. Resolution of the stepping motion of kinesin on microtubules by interferometry. 7.4. Observation of single stepwise motion of muscle Myosin-II molecules on actin using feedback and tweezers. 7.5. Measurement of diffusional motion and stepping in actin-myosin interactions. 7.6. Measurement of myosin step size using an oriented single-headed molecule. 7.7. Forces on smooth muscle myosin and use of fluorescently labeled ATP with total internal reflection microscopy. 7.8. Observation of two-step behavior of Myosin I using the tweezer Dumbbell technique. 7.9. Study of processive class-V myosins using a pair of tweezer traps. 7.10. Force vs. velocity measurement on kinesin motor molecules. 7.11. Single enzyme kinetics of kinesin. 7.12. Kinesin hydrolyses one ATP molecule per 8 nm step. 7.13. Feedback control of tweezers: force clamps and position clamps. 7.14. Study of single kinesin molecules with a force clamp. 7.15. Structural measurements on kinesin. 7.16. Substeps within the 8 nm step of the ATPase cycle of single kinesin molecules. 7.17. Processivity of a single-headed kinesin construct C351 and the Brownian ratchet. 7.18. Myosin VI is a processive motor with a large step size. 7.19. Mapping the actin filament with myosin. 7.20. Development regulation of vesicle transport in Drosophila embryos: forces and kinetics. 7.21. Dynein-mediated cargo transport In Vivo: a switch controls travel distance. 7.22. Kinesin moves by an asymmetric hand-over-hand mechanism. ch. 8. Applications to RNA and DNA. 8.1. Observation of the force of an RNA polymerase molecule as it transcribes DNA. 8.2. Force and velocity measured for single molecules of RNA polymerase. 8.3. Measurement of the mechanical properties of DNA polymer strands. 8.4. Measurement of flexural rigidity of microtubule fibers and torsional rigidity of microtubules and actin filaments. 8.5. Measurement of the stretching of double-and single-stranded DNA. 8.6. Polymerization of RecA protein on individual ds DNA molecules. 8.7. Study of elasticity of RecA-DNA filaments with constant tension feedback. 8.8. Possible role of tweezers in DNA sequencing. 8.9. Study of the structure of DNA and chromatin fibers by stretching with light forces. 8.10. Condensation and decondensation of the same DNA molecule by protamine and arginine molecules. 8.11. Non-mendelian inheritance of chloroplast DNA in living algal cells using tweezers. 8.12. Measurement of the force and mechanical properties of DNA polymerase with optical tweezers. 8.13. Reversible unfolding of single RNA molecules by mechanical force. 8.14. Grafting of single DNA molecules to AFM cantilevers using optical tweezers. 8.15. Structural transition and elasticity from torque measurements on DNA. 8.16. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. 8.17. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. 8.18. RNA polymerase can track a DNA groove during promoter search. 8.19. The bacterial Condensin MukBEF compacts DNA into a repetitive, stable structure. 8.20. Forward and reverse motion of RecBCD molecules on DNA. 8.21. Direct observation of base-pair stepping by RNA polymersase. ch. 9. Study of the mechanical properties of other macromolecules with optical tweezers. 9.1. Stretching and relaxation of the giant molecule Titin. 9.2. Cell motility of adherent cells over an extra-cellular matrix. 9.3. Study of forces that regulate the movement of plasma membrane proteins. 9.4. Membrane tube formation from giant vesicles by dynamic association of motor proteins. IVB. Other recent applications in physics and chemistry. ch. 10. Origin of tweezer forces on macroscopic particles using highly focused beams. 10.1. Origin of the net backward radiation pressure force in tweezer traps. 10.2. Light propagation at the focus of a high numerical aperture beam. 10.3. Calculation of the tweezer forces on dielectric spheres in the ray-optics regime. 10.4. Corrections to paraxial ray approximation for strongly focused Gaussian beams. 10.5. Fifth-order corrected electromagnetic field components for a focused fundamental Gaussian beam. 10.6. Computation of net force and torque for a spherical particle illuminated by a focused laser beam. 10.7. Measurements of the forces on microspheres held by optical tweezers. 10.8. Generalized Lorenz-Mie theory for convergent Gaussian beams. 10.9. Computation of backward radiation pressure using GLMT. 10.10. Single-beam trapping of Rayleigh and macroscopic particles using exact diffraction theory. 10.11. Optical gradient forces of strongly localized fields. 10.12. Exact theory of optical tweezers for macroscopic dielectric spheres. 10.13. Use of optical tweezers as a stylus support for scanning force microscopy. 10.14. Localized dynamic light scattering. 10.15. Thermal ratchet motors. 10.16. Experimental test of Kramers' theory of thermally driven transition rates. ch. 11. Study of charge-stabilized colloidal suspensions. 11.1. Optically induced colloidal crystals. 11.2. Optical matter: crystallization and binding of particles in intense laser fields. 11.3. Microscopic measurement of the pair interaction of charge-stabilized colloids using tweezers. 11.4. Theoretical approaches to the understanding of pair interactions of charge-stabilized colloids. 11.5. Confinement-induced colloidal attractions in equilibrium. 11.6. Entropic forces in binary colloids. 11.7. Entropic control of particle motion using passive surface microstructures. 11.8. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. ch. 12. Rotation of particles by radiation pressure. 12.1. Optically induced rotation of an anisotropic micro-particle fabricated by surface micromachining. 12.2. Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis. 12.3. Optical microrotors. 12.4. Orbital angular momentum. 12.5.  
505 0 |a Observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. 12.6. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. 12.7. Controlled rotation of optically trapped microscopic particles. 12.8. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. ch. 13. Microchemistry. 13.1. Laser trapping, electrochemistry, and photochemistry of a single microdroplet. 13.2. Control of dye formation inside a single laser-positioned droplet by electrolysis. 13.3. Laser-controlled phase transitions in PNIPAM and reversible formation of liquid drops. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Laser manipulation (Nuclear physics) 
650 0 |a Miniature electronic equipment. 
650 6 |a Manipulation par laser (Physique nucléaire) 
650 6 |a Équipement électronique miniaturisé. 
650 7 |a SCIENCE  |x Physics  |x Nuclear.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x Atomic & Molecular.  |2 bisacsh 
650 7 |a Laser manipulation (Nuclear physics)  |2 fast 
650 7 |a Miniature electronic equipment  |2 fast 
776 0 8 |i Print version:  |a Ashkin, Arthur, 1922-  |t Optical trapping and manipulation of neutral particles using lasers.  |d Hackensack, NJ : World Scientific, ©2006  |w (DLC) 2007298004 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210868  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684556 
938 |a EBSCOhost  |b EBSC  |n 210868 
938 |a YBP Library Services  |b YANK  |n 2736125 
994 |a 92  |b IZTAP