Cargando…

Least squares support vector machines /

Annotation.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Suykens, Johan A. K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, NJ : World Scientific, 2002.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn305127050
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 020813s2002 njua ob 001 0 eng d
010 |z  2002033063 
040 |a CaPaEBR  |b eng  |e pn  |c COCUF  |d OCLCQ  |d N$T  |d YDXCP  |d OCLCQ  |d MERUC  |d CCO  |d E7B  |d OCLCQ  |d OCLCF  |d AU@  |d IDEBK  |d OCLCQ  |d AZK  |d AGLDB  |d OCLCQ  |d COCUF  |d OCLCQ  |d MOR  |d PIFAG  |d OCLCQ  |d STF  |d WRM  |d VTS  |d NRAMU  |d VT2  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCO  |d OCLCQ  |d UKCRE 
019 |a 181654895  |a 560446647  |a 647683458  |a 842666106  |a 961557317  |a 962617482  |a 988523809  |a 991988531  |a 1037756956  |a 1038640844  |a 1045443149  |a 1055383731  |a 1081227829  |a 1153028500 
020 |a 9812776656  |q (electronic bk.) 
020 |a 9789812776655  |q (electronic bk.) 
020 |z 9789812381514 
020 |z 9789812776655 
020 |z 9812381511 
029 1 |a AU@  |b 000049162968 
029 1 |a AU@  |b 000050966754 
029 1 |a AU@  |b 000051547317 
029 1 |a DEBBG  |b BV042967709 
029 1 |a DEBSZ  |b 422167576 
029 1 |a GBVCP  |b 799464864 
029 1 |a NZ1  |b 13069452 
035 |a (OCoLC)305127050  |z (OCoLC)181654895  |z (OCoLC)560446647  |z (OCoLC)647683458  |z (OCoLC)842666106  |z (OCoLC)961557317  |z (OCoLC)962617482  |z (OCoLC)988523809  |z (OCoLC)991988531  |z (OCoLC)1037756956  |z (OCoLC)1038640844  |z (OCoLC)1045443149  |z (OCoLC)1055383731  |z (OCoLC)1081227829  |z (OCoLC)1153028500 
037 |b 00041155 
050 4 |a Q325.5  |b .L45 2002eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 21 
049 |a UAMI 
245 0 0 |a Least squares support vector machines /  |c Johan A.K. Suykens [and others]. 
260 |a River Edge, NJ :  |b World Scientific,  |c 2002. 
300 |a 1 online resource (xiv, 294 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 8 |a Annotation.  |b This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing spareness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nystrom sampling with active selection of support vectors. The methods are illustrated with several examples. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Algorithms. 
650 0 |a Kernel functions. 
650 0 |a Least squares. 
650 2 |a Algorithms 
650 2 |a Least-Squares Analysis 
650 6 |a Apprentissage automatique. 
650 6 |a Algorithmes. 
650 6 |a Noyaux (Mathématiques) 
650 6 |a Moindres carrés. 
650 7 |a algorithms.  |2 aat 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Algorithms.  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Kernel functions.  |2 fast  |0 (OCoLC)fst00986892 
650 7 |a Least squares.  |2 fast  |0 (OCoLC)fst00995082 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Suykens, Johan A. K. 
776 0 8 |i Print version:  |t Least squares support vector machines.  |d River Edge, NJ : World Scientific, 2002  |w (DLC) 2002033063 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210682  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684664 
938 |a EBSCOhost  |b EBSC  |n 210682 
938 |a YBP Library Services  |b YANK  |n 2736137 
994 |a 92  |b IZTAP