Stark effect in a hydrogenic atom or ion : treated by the phase-integral method /
This book treats the Stark effect of a hydrogenic atom or ion in a homogeneous electric field. It begins with a thorough review of previous work in this field since 1926. After the Schrödinger equation has been separated with respect to time dependence, centre of mass motion and internal motion, fo...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London, UK :
Imperial College Press,
©2008.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 2. Schrödinger equation, its seperation and its exact eigenfunctions. 2.1. Separation of the time-independent Schrd̈inger equation for the internal motion. 2.2. Properties of the eigenfunctions of the time-independent Schrödinger equation for the internal motion
- 3. Development in time of the probability amplitude for a decaying state
- 4. Phase-integral method. 4.1. Phase-integral approximation generated from an unspecified base function. 4.2. Connection formulas associated with a single transition point
- 5. Derivation of phase-integral formulas for profiles, energies and half-widths of Stark levels. 5.1. Positions of the Stark levels. 5.2. Formulas for the calculation of dL/dE, dK[symbol]/dE and dK/dE. 5.3. Half-widths of the Stark intervals
- 6. Procedure for transformation of the phase-integral formulas into formulas involving complete elliptic integrals
- Adjoined papers by Anders Hökback and Per Olof Fröman
- 7. Phase-inegral quantities and their partial derivatives with respect to [symbol] and [symbol] expressed in terms of complete elliptic integrals. 7.1. The [symbol]-equation. 7.2. The [symbol]-equation in the sub-barrier case. 7.3. The [symbol]-equation in the super-barrier case
- 8. Numerical results.