Model selection and model averaging /
Given a data set, you can fit thousands of models at the push of a button, but how do you choose the best? With so many candidate models, overfitting is a real danger. Is the monkey who typed Hamlet actually a good writer?" "Choosing a suitable model is central to all statistical work with...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
2008.
|
Colección: | Cambridge series on statistical and probabilistic mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Model selection : data examples and introduction
- Akaike's information criterion
- The Bayesian information criterion
- A comparison of some selection methods
- Bigger is not always better
- The focussed information criterion
- Frequentist and Bayesian model averaging
- Lack-of-fit and goodness-of-fit tests
- Model selection and averaging schemes in action
- Further topics.