Cargando…

Groups with prescribed quotient groups and associated module theory /

The influence of different gomomorphic images on the structure of a group is one of the most important and natural problems of group theory. The problem of describing a group with all its gomomorphic images known, i.e. reconstructing the whole thing using its reflections, seems especially natural an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kurdachenko, Leonid A., 1949-
Otros Autores: Otal, Jean-Pierre, Subbotin, Igor Ya., 1950-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, NJ : World Scientific, ©2002.
Colección:Series in algebra ; v. 8.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn277199812
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 020514s2002 njua ob 001 0 eng d
010 |a  2002279810 
040 |a CaPaEBR  |b eng  |e pn  |c COCUF  |d OCLCQ  |d N$T  |d YDXCP  |d OCLCQ  |d DKDLA  |d ADU  |d E7B  |d OCLCQ  |d OCLCA  |d OCLCQ  |d IDEBK  |d OCLCF  |d OCLCO  |d OCLCA  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFBR  |d OCLCQ  |d JBG  |d OCLCQ  |d COO  |d LWA  |d STF  |d WRM  |d VTS  |d NRAMU  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d LEAUB  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d UKCRE  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 181642579  |a 465656166  |a 474795611  |a 614463490  |a 647683719  |a 888835204  |a 961531093  |a 962585220  |a 988508676  |a 992100979  |a 1037758570  |a 1038607535  |a 1045452983  |a 1055365957  |a 1062878649  |a 1081221395  |a 1119019994  |a 1153523122  |a 1228618597 
020 |a 9789812778291  |q (electronic bk.) 
020 |a 9812778292  |q (electronic bk.) 
020 |a 9789810247836 
020 |a 9810247834 
020 |z 9810247834 
029 1 |a AU@  |b 000049163329 
029 1 |a AU@  |b 000051368528 
029 1 |a AU@  |b 000053251624 
029 1 |a DEBBG  |b BV043122765 
029 1 |a DEBSZ  |b 422167835 
029 1 |a GBVCP  |b 802723489 
029 1 |a NZ1  |b 12808116 
035 |a (OCoLC)277199812  |z (OCoLC)181642579  |z (OCoLC)465656166  |z (OCoLC)474795611  |z (OCoLC)614463490  |z (OCoLC)647683719  |z (OCoLC)888835204  |z (OCoLC)961531093  |z (OCoLC)962585220  |z (OCoLC)988508676  |z (OCoLC)992100979  |z (OCoLC)1037758570  |z (OCoLC)1038607535  |z (OCoLC)1045452983  |z (OCoLC)1055365957  |z (OCoLC)1062878649  |z (OCoLC)1081221395  |z (OCoLC)1119019994  |z (OCoLC)1153523122  |z (OCoLC)1228618597 
050 4 |a QA174.2  |b .K87 2002eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512/.2  |2 21 
049 |a UAMI 
100 1 |a Kurdachenko, Leonid A.,  |d 1949- 
245 1 0 |a Groups with prescribed quotient groups and associated module theory /  |c L. Kurdachenko, J. Otal, I. Subbotin. 
260 |a River Edge, NJ :  |b World Scientific,  |c ©2002. 
300 |a 1 online resource (xvi, 227 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series in algebra ;  |v v. 8 
504 |a Includes bibliographical references (pages 203-219) and index. 
505 0 0 |g I. Simple Modules --  |t On annihilators of modules --  |t Structure of simple modules over Abelian Groups --  |t Structure of simple modules over some generalization of Abelian groups --  |t Complements of simple submodules --  |g II. Just infinite modules --  |t Some results on modules over Dedekind domains --  |t Just infinite modules over FC-hypercentral groups --  |t Just infinite modules over groups of finite 0-rank --  |t Just infinite modules over polycyclic-by-finite groups --  |t Co-layer-finite modules over Dedekind domains --  |g III. Just non-X-groups --  |t Fitting subgroup of some just non-X-groups --  |t Just non-Abelain groups --  |t Just non-hypercentral groups and just non-hypercentral modules --  |t Groups with many nilpotent factor-groups --  |t Groups with proper periodic factor-groups --  |t Just non-(polycyclic-by-finite) groups --  |t Just non-CC-groups and related classes --  |t Groups whose proper factor-groups have a transitive normality relation. 
588 0 |a Print version record. 
520 |a The influence of different gomomorphic images on the structure of a group is one of the most important and natural problems of group theory. The problem of describing a group with all its gomomorphic images known, i.e. reconstructing the whole thing using its reflections, seems especially natural and promising. This theme has a history that is almost a half-century long. The authors of this book present well-established results as well as newer, contemporary achievements in this area from the common integral point of view. This view is based on the implementation of module theory for solving group problems. Evidently, this approach requires investigation of some specific types of modules: infinite simple modules and just infinite modules (note that every infinite noetherian module has either an infinite simple factor-module or a just infinite factor-module). This book will therefore be useful for group theorists as well as ring and module theorists. Also, the level, style, and presentation make the book easily accessible to graduate students. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Group theory. 
650 0 |a Modules (Algebra) 
650 6 |a Théorie des groupes. 
650 6 |a Modules (Algèbre) 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Group theory  |2 fast 
650 7 |a Modules (Algebra)  |2 fast 
650 7 |a Teoria dos grupos.  |2 larpcal 
650 7 |a Representação de grupos.  |2 larpcal 
650 7 |a Álgebra.  |2 larpcal 
700 1 |a Otal, Jean-Pierre. 
700 1 |a Subbotin, Igor Ya.,  |d 1950- 
776 0 8 |i Print version:  |a Kurdachenko, L.  |t Groups with prescribed quotient groups and associated module theory.  |d River Edge, NJ : World Scientific, ©2002  |z 9810247834  |z 9789810247836  |w (DLC) 2002279810  |w (OCoLC)49936279 
830 0 |a Series in algebra ;  |v v. 8. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210654  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684806 
938 |a EBSCOhost  |b EBSC  |n 210654 
938 |a YBP Library Services  |b YANK  |n 2736196 
994 |a 92  |b IZTAP