Cargando…

Analysis on Lie groups : an introduction /

The subject of analysis on Lie groups comprises an eclectic group of topics which can be treated from many different perspectives. This self-contained text concentrates on the perspective of analysis, to the topics and methods of non-commutative harmonic analysis, assuming only elementary knowledge...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Faraut, Jacques, 1940-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press, 2008.
Colección:Cambridge studies in advanced mathematics ; 110.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn270110558
003 OCoLC
005 20231017213018.0
006 m o d
007 cr zn|||||||||
008 080808s2008 enka ob 001 0 eng d
040 |a CDX  |b eng  |e pn  |c CDX  |d OCLCQ  |d TEFOD  |d N$T  |d IDEBK  |d E7B  |d OCLCQ  |d CHC  |d OCLCQ  |d REDDC  |d OCLCQ  |d OCLCF  |d OCLCO  |d YDXCP  |d HUH  |d OCLCQ  |d TEFOD  |d OCLCQ  |d LOA  |d AZK  |d OCLCQ  |d COCUF  |d MOR  |d PIFAG  |d OTZ  |d OCLCQ  |d UAB  |d STF  |d WRM  |d OCLCQ  |d VT2  |d OCLCQ  |d OL$  |d UIU  |d UKCRE  |d UKAHL  |d LUN  |d OCLCQ  |d OCLCO  |d CN6UV  |d TUHNV  |d QGK  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBA825124  |2 bnb 
016 7 |z 014536951  |2 Uk 
019 |a 276480262  |a 289118273  |a 646761683  |a 663425585  |a 706495235  |a 960200846  |a 961595624  |a 962700516  |a 988483979  |a 991965384  |a 994954083  |a 1035664471  |a 1037687407  |a 1038564880  |a 1055334797  |a 1153542019  |a 1170334968  |a 1172993053  |a 1228564161  |a 1243592276  |a 1259199103 
020 |a 0511423500  |q (electronic bk.) 
020 |a 9780511423505  |q (electronic bk.) 
020 |a 9780511421105  |q (electronic bk. ;  |q Adobe Reader) 
020 |a 0511421109  |q (electronic bk. ;  |q Adobe Reader) 
020 |a 9780511423987  |q (electronic bk.) 
020 |a 0511423985  |q (electronic bk.) 
020 |a 9780511755170 
020 |a 0511755171 
020 |a 1107173981 
020 |a 9781107173989 
020 |a 1281775533 
020 |a 9781281775535 
020 |a 9786611775537 
020 |a 6611775536 
020 |a 0511421648 
020 |a 9780511421648 
020 |a 0511422962 
020 |a 9780511422966 
020 |z 0521719305  |q (Cloth) 
020 |z 9780521719308  |q (hbk.) 
024 8 |a 9786611775537 
029 0 |a CDX  |b 8981798 
035 |a (OCoLC)270110558  |z (OCoLC)276480262  |z (OCoLC)289118273  |z (OCoLC)646761683  |z (OCoLC)663425585  |z (OCoLC)706495235  |z (OCoLC)960200846  |z (OCoLC)961595624  |z (OCoLC)962700516  |z (OCoLC)988483979  |z (OCoLC)991965384  |z (OCoLC)994954083  |z (OCoLC)1035664471  |z (OCoLC)1037687407  |z (OCoLC)1038564880  |z (OCoLC)1055334797  |z (OCoLC)1153542019  |z (OCoLC)1170334968  |z (OCoLC)1172993053  |z (OCoLC)1228564161  |z (OCoLC)1243592276  |z (OCoLC)1259199103 
037 |b OverDrive, Inc.  |n http://www.overdrive.com 
037 |a 299BBB26-8F56-48BE-B133-69298352E26D  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA387  |b .F37 2008eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.482  |2 22 
049 |a UAMI 
100 1 |a Faraut, Jacques,  |d 1940- 
245 1 0 |a Analysis on Lie groups :  |b an introduction /  |c Jacques Faraut. 
260 |a Cambridge, UK ;  |a New York :  |b Cambridge University Press,  |c 2008. 
300 |a 1 online resource (x, 302 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Cambridge studies in advanced mathematics ;  |v 110 
504 |a Includes bibliographical references (pages 299-300) and index. 
588 0 |a Print version record. 
505 0 |a The linear group -- The exponential map -- Linear Lie groups -- Lie algebras -- Haar measure -- Representations of compact groups -- The groups SU(2) and SO(3), Haar measure -- Analysis on the group SU(2) -- Analysis on the sphere and the Euclidean space -- Analysis on the spaces of symmetric and Hermitian matrices -- Irreducible representations of the unitary group -- Analysis on the unitary group. 
520 |a The subject of analysis on Lie groups comprises an eclectic group of topics which can be treated from many different perspectives. This self-contained text concentrates on the perspective of analysis, to the topics and methods of non-commutative harmonic analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author avoids unessential technical discussions and instead describes in detail many interesting examples, including formulae which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Lie groups. 
650 0 |a Lie algebras. 
650 6 |a Groupes de Lie. 
650 6 |a Algèbres de Lie. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Lie algebras  |2 fast 
650 7 |a Lie groups  |2 fast 
776 0 8 |i Print version:  |a Faraut, Jacques, 1940-  |t Analysis on Lie groups.  |d Cambridge, UK ; New York : Cambridge University Press, 2008  |w (DLC) 2007053046 
830 0 |a Cambridge studies in advanced mathematics ;  |v 110. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=244494  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13431593 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37559757 
938 |a Coutts Information Services  |b COUT  |n 8981798 
938 |a EBSCOhost  |b EBSC  |n 244494 
938 |a YBP Library Services  |b YANK  |n 2927993 
938 |a YBP Library Services  |b YANK  |n 2892770 
938 |a YBP Library Services  |b YANK  |n 3583801 
994 |a 92  |b IZTAP