Cargando…

Branching solutions to one-dimensional variational problems /

This study deals with the new class of one-dimensional variational problems - the problems with branching solutions. Instead of extreme curves (mappings of a segment to a manifold) it investigates extreme networks, which are mappings of graphs (one-dimensional cell complexes) to a manifold. Various...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ivanov, A. O. (Alexander O.)
Otros Autores: Tuzhilin, A. A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn269468852
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081107s2001 si a ob 001 0 eng d
010 |z  00063439  
040 |a N$T  |b eng  |e pn  |c N$T  |d N$T  |d YDXCP  |d N$T  |d OCLCQ  |d OSU  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d NLGGC  |d EBLCP  |d DEBSZ  |d OCLCQ  |d STF  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d LEAUB  |d UKCRE  |d VLY  |d OCLCO  |d OCLCQ  |d INARC 
019 |a 300288323  |a 646768804  |a 764501667  |a 815755953  |a 961626822  |a 962691459  |a 988406786  |a 991977438  |a 1037717213  |a 1038613848  |a 1045465022  |a 1055364137  |a 1081246998  |a 1086440017  |a 1153551273  |a 1162004304  |a 1228540697  |a 1290105934  |a 1300580483  |a 1391285901 
020 |a 9789812810717  |q (electronic bk.) 
020 |a 9812810714  |q (electronic bk.) 
020 |a 9810240600  |q (alk. paper) 
020 |a 9789810240608  |q (alk. paper) 
020 |a 1281956368 
020 |a 9781281956361 
020 |a 9786611956363 
020 |a 6611956360 
029 1 |a AU@  |b 000049162520 
029 1 |a AU@  |b 000053267465 
029 1 |a DEBBG  |b BV043080416 
029 1 |a DEBBG  |b BV044179487 
029 1 |a DEBSZ  |b 405248253 
029 1 |a DEBSZ  |b 422096695 
029 1 |a GBVCP  |b 802708692 
029 1 |a NZ1  |b 13858155 
035 |a (OCoLC)269468852  |z (OCoLC)300288323  |z (OCoLC)646768804  |z (OCoLC)764501667  |z (OCoLC)815755953  |z (OCoLC)961626822  |z (OCoLC)962691459  |z (OCoLC)988406786  |z (OCoLC)991977438  |z (OCoLC)1037717213  |z (OCoLC)1038613848  |z (OCoLC)1045465022  |z (OCoLC)1055364137  |z (OCoLC)1081246998  |z (OCoLC)1086440017  |z (OCoLC)1153551273  |z (OCoLC)1162004304  |z (OCoLC)1228540697  |z (OCoLC)1290105934  |z (OCoLC)1300580483  |z (OCoLC)1391285901 
050 4 |a QA331  |b .I935 2001eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a PBMP  |2 bicssc 
082 0 4 |a 515  |2 22 
049 |a UAMI 
100 1 |a Ivanov, A. O.  |q (Alexander O.) 
245 1 0 |a Branching solutions to one-dimensional variational problems /  |c A.O. Ivanov & A.A. Tuzhilin. 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xxi, 342 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references (pages 323-329) and index. 
588 0 |a Print version record. 
520 |a This study deals with the new class of one-dimensional variational problems - the problems with branching solutions. Instead of extreme curves (mappings of a segment to a manifold) it investigates extreme networks, which are mappings of graphs (one-dimensional cell complexes) to a manifold. Various applications of the approach are presented, such as several generalizations of the famous Steiner problem of finding the shortest network spanning given points of the plane. 
505 0 |a Ch. 1. Preliminary results. 1.1. Graphs. 1.2. Parametric networks. 1.3. Network-traces. 1.4. Stating of variational problem -- ch. 2. Networks extremality criteria. 2.1. Local structure of extreme parametric networks. 2.2. Local structure of extreme networks-traces -- ch. 3. Linear networks in [symbol]. 3.1. Mutually parallel linear networks with a given boundary. 3.2. Geometry of planar linear trees. 3.3. On the proof of Theorem -- ch. 4. Extremals of length type functionals: the case of parametric networks. 4.1. Parametric networks extreme with respect to Riemannian length functional. 4.2. Local structure of weighted extreme parametric networks. 4.3. Polyhedron of extreme weighted networks in space, having some given type and boundary. 4.4. Global structure of planar extreme weighted trees. 4.5. Geometry of planar embedded extreme weighted binary trees -- ch. 5. Extremals of the length functional: the case of networks -- traces. 5.1. Minimal networks on Euclidean plane. 5.2. Closed minimal networks on closed surfaces of constant curvature. 5.3. Closed local minimal networks on surfaces of polyhedra. 5.4. M.V. Pronin. Morse indices of local minimal networks. 5.5. G.A. Karpunin. Morse theory for planar linear networks -- ch. 6. Extremals of functionals generated by norms. 6.1. Norms of general form. 6.2. Stability of extreme binary trees under deformations of the boundary. 6.3. Planar norms with strictly convex smooth circles. 6.4. Manhattan local minimal and extreme networks. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Extremal problems (Mathematics) 
650 0 |a Steiner systems. 
650 6 |a Problèmes extrémaux (Mathématiques) 
650 6 |a Systèmes de Steiner. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Extremal problems (Mathematics)  |2 fast  |0 (OCoLC)fst00919059 
650 7 |a Steiner systems.  |2 fast  |0 (OCoLC)fst01132934 
700 1 |a Tuzhilin, A. A. 
776 0 8 |i Print version:  |a Ivanov, A.O. (Alexander O.).  |t Branching solutions to one-dimensional variational problems.  |d Singapore ; River Edge, NJ : World Scientific, ©2001  |z 9789810240608  |w (DLC) 00063439  |w (OCoLC)44811646 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235934  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685570 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1681516 
938 |a ebrary  |b EBRY  |n ebr10255833 
938 |a EBSCOhost  |b EBSC  |n 235934 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 195636 
938 |a YBP Library Services  |b YANK  |n 2907172 
938 |a Internet Archive  |b INAR  |n branchingsolutio0000ivan 
994 |a 92  |b IZTAP