Cargando…

Lectures on infinite-dimensional Lie algebra /

The representation theory of affine lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three valuable works on it, written by Victor G Kac. This volume begins with a survey and review of the material treat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wakimoto, Minoru, 1942-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, N.J. : World Scientific, ©2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn269468827
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081107s2001 nju ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d N$T  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d DKDLA  |d OCLCQ  |d NLGGC  |d I9W  |d EBLCP  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCQ  |d LOA  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d VGM  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 505142837  |a 646768575  |a 764500548  |a 815755950  |a 910743210  |a 961533845  |a 962630739 
020 |a 9789812810700  |q (electronic bk.) 
020 |a 9812810706  |q (electronic bk.) 
020 |a 128195635X 
020 |a 9781281956354 
020 |z 9810241283 
020 |z 9810241291  |q (pbk.) 
029 1 |a AU@  |b 000049162746 
029 1 |a AU@  |b 000051377887 
029 1 |a DEBBG  |b BV043080426 
029 1 |a DEBBG  |b BV044179570 
029 1 |a DEBSZ  |b 405248741 
029 1 |a DEBSZ  |b 422096733 
029 1 |a GBVCP  |b 802708668 
029 1 |a NZ1  |b 13858065 
035 |a (OCoLC)269468827  |z (OCoLC)505142837  |z (OCoLC)646768575  |z (OCoLC)764500548  |z (OCoLC)815755950  |z (OCoLC)910743210  |z (OCoLC)961533845  |z (OCoLC)962630739 
050 4 |a QA252.3  |b .W338 2001eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
072 7 |a PBF  |2 bicssc 
082 0 4 |a 512/.482  |2 22 
049 |a UAMI 
100 1 |a Wakimoto, Minoru,  |d 1942- 
245 1 0 |a Lectures on infinite-dimensional Lie algebra /  |c Minoru Wakimoto. 
246 3 0 |a Infinite-dimensional Lie algebra 
260 |a River Edge, N.J. :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (x, 444 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 429-440) and index. 
588 0 |a Print version record. 
505 0 |a 1. Preliminaries on affine Lie algebras. 1.1. Affine Lie algebras. 1.2. Extended affine Weyl group. 1.3. Some formulas for finite-dimensional simple Lie algebras -- 2. Characters of integrable representations. 2.1. Weyl-Kac character formula. 2.2. Specialized characters. 2.3. Product expression of characters. 2.4. Modular transformation -- 3. Principal admissible weights. 3.1. Admissible weights. 3.2. Principal admissible weights. 3.3. Characters of principal admissible representations. 3.4. Parametrization of principal admissible weights. 3.5. Modular transformation -- 4. Residue of principal admissible characters. 4.1. Non-degenerate principal admissible weights. 4.2. Modular transformation of residue. 4.3. Fusion coefficients -- 5. Characters of affine orbifolds. 5.1. Characters of finite groups. 5.2. Fusion datum. 5.3. Characters of affine orbifolds -- 6. Operator calculus. 6.1. Operator products. 6.2. Boson-fermion correspondence -- 7. Branching functions. 7.1. Virasoro modules. 7.2. Virasoro modules of central charge-[symbol]. 7.3. Branching functions. 7.4. Tensor product decomposition -- 8. W-algebra. 8.1. Free fermionic fields [symbol](z) and [symbol](z). 8.2. Free fermionic fields [symbol](z) and [symbol](z). 8.3. Ghost field associated to a simple Lie algebra. 8.4. BRST complex. 8.5. Euler-Poincaré characteristics -- 9. Vertex representations for affine Lie algebras. 9.1. Simple examples of vertex operators. 9.2. Basic representations of [symbol](2, C). 9.3. Construction of basic representation -- 10. Soliton equations. 10.1. Hirota bilinear differential operators. 10.2. KdV equation and Hirota bilinear differential equations. 10.3. Hirota equations associated to the basic representation. 10.4. Non-linear Schrödinger equations. 
520 |a The representation theory of affine lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three valuable works on it, written by Victor G Kac. This volume begins with a survey and review of the material treated in Kac's books. In particular, modular invariance and conformal invariance are explained in more detail. The book then goes further, dealing with some of the recent topics involving the representation theory of affine lie algebras. Since these topics are important not only in themselves but also in their application to some areas of mathematics and mathematical physics, the book expounds them with examples and detailed calculations. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Infinite dimensional Lie algebras. 
650 0 |a Lie algebras. 
650 6 |a Algèbres de Lie de dimension infinie. 
650 6 |a Algèbres de Lie. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Infinite dimensional Lie algebras  |2 fast 
650 7 |a Lie algebras  |2 fast 
776 0 8 |i Print version:  |a Wakimoto, Minoru, 1942-  |t Lectures on infinite-dimensional Lie algebra.  |d River Edge, N.J. : World Scientific, ©2001  |z 9789810241285  |w (DLC) 2005297915  |w (OCoLC)60596262 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235930  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685569 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681623 
938 |a ebrary  |b EBRY  |n ebr10255678 
938 |a EBSCOhost  |b EBSC  |n 235930 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 195635 
938 |a YBP Library Services  |b YANK  |n 2907171 
994 |a 92  |b IZTAP