Cargando…

Differential neural networks for robust nonlinear control : identification, state estimation and trajectory tracking /

This volume deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Poznyak, Alexander S.
Otros Autores: Sanchez, Edgar N., Yu, Wen (Robotics engineer)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, NJ : World Scientific, ©2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn269460849
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081107s2001 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d N$T  |d YDXCP  |d N$T  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCF  |d NLGGC  |d OCLCQ  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d ZCU  |d JBG  |d OCLCQ  |d VTS  |d VT2  |d AU@  |d OCLCQ  |d STF  |d M8D  |d UKAHL  |d OCLCA  |d WYU  |d OCLCO  |d OCLCQ 
019 |a 1063868260 
020 |a 9789812811295  |q (electronic bk.) 
020 |a 981281129X  |q (electronic bk.) 
020 |a 9810246242 
020 |a 9789810246242 
020 |a 1281956732 
020 |a 9781281956736 
024 3 |a 9789810246242 
029 1 |a AU@  |b 000051543796 
029 1 |a DEBBG  |b BV043106190 
029 1 |a DEBSZ  |b 422097764 
029 1 |a GBVCP  |b 802708560 
035 |a (OCoLC)269460849  |z (OCoLC)1063868260 
037 |b 00041155 
050 4 |a QA76.87  |b .P69 2001eb 
072 7 |a TEC  |x 004000  |2 bisacsh 
072 7 |a UYQN  |2 bicssc 
082 0 4 |a 629.89  |2 22 
049 |a UAMI 
100 1 |a Poznyak, Alexander S. 
245 1 0 |a Differential neural networks for robust nonlinear control :  |b identification, state estimation and trajectory tracking /  |c Alexander S. Poznyak, Edgar N. Sanchez, Wen Yu. 
260 |a River Edge, NJ :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xxxi, 422 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a This volume deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical). 
505 0 |a 0.1 Abstract ; 0.2 Preface ; 0.3 Acknowledgments ; 0.4 Introduction ; 0.4.1 Guide for the Readers ; 0.5 Notations ; I Theoretical Study ; 1 Neural Networks Structures ; 1.1 Introduction ; 1.2 Biological Neural Networks ; 1.3 Neuron Model. 
505 8 |a 1.4 Neural Networks Structures 1.4.1 Single-Layer Feedforward Networks ; 1.4.2 Multilayer Feedforward Neural Networks ; 1.4.3 Radial Basis Function Neural Networks ; 1.4.4 Recurrent Neural Networks ; 1.4.5 Differential Neural Networks ; 1.5 Neural Networks in Control. 
505 8 |a 1.5.1 Identification 1.5.2 Control ; 1.6 Conclusions ; 1.7 References ; 2 Nonlinear System Identification: Differential Learning ; 2.1 Introduction ; 2.2 Identification Error Stability Analysis for Simplest Differential Neural Networks without Hidden Layers. 
505 8 |a 2.2.1 Nonlinear System and Differential Neural Network Model 2.2.2 Exact Neural Network Matching with Known Linear Part ; 2.2.3 Non-exact Neural Networks Modelling: Bounded Unmodelled Dynamics Case. 
505 8 |a 2.2.4 Estimation of Maximum Value of Identification Error for Nonlinear Systems with Bounded Unmodelled Dynamics 2.3 Multilayer Differential Neural Networks for Nonlinear System On-line Identification ; 2.3.1 Multilayer Structure of Differential Neural Networks. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Neural networks (Computer science) 
650 0 |a Nonlinear control theory. 
650 0 |a Robust control. 
650 2 |a Neural Networks, Computer 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Commande non linéaire. 
650 6 |a Commande robuste. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Automation.  |2 bisacsh 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Nonlinear control theory.  |2 fast  |0 (OCoLC)fst01038787 
650 7 |a Robust control.  |2 fast  |0 (OCoLC)fst01099109 
700 1 |a Sanchez, Edgar N. 
700 1 |a Yu, Wen  |c (Robotics engineer) 
776 0 8 |i Print version:  |a Poznyak, Alexander S.  |t Differential neural networks for robust nonlinear control.  |d River Edge, NJ : World Scientific, ©2001  |z 9789810246242  |w (DLC) 2002275143  |w (OCoLC)50291236 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235826  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685609 
938 |a EBSCOhost  |b EBSC  |n 235826 
938 |a YBP Library Services  |b YANK  |n 2907176 
994 |a 92  |b IZTAP