|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn269460849 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
081107s2001 njua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d N$T
|d YDXCP
|d N$T
|d OCLCQ
|d IDEBK
|d OCLCQ
|d OCLCF
|d NLGGC
|d OCLCQ
|d COCUF
|d AGLDB
|d MOR
|d CCO
|d ZCU
|d JBG
|d OCLCQ
|d VTS
|d VT2
|d AU@
|d OCLCQ
|d STF
|d M8D
|d UKAHL
|d OCLCA
|d WYU
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 1063868260
|
020 |
|
|
|a 9789812811295
|q (electronic bk.)
|
020 |
|
|
|a 981281129X
|q (electronic bk.)
|
020 |
|
|
|a 9810246242
|
020 |
|
|
|a 9789810246242
|
020 |
|
|
|a 1281956732
|
020 |
|
|
|a 9781281956736
|
024 |
3 |
|
|a 9789810246242
|
029 |
1 |
|
|a AU@
|b 000051543796
|
029 |
1 |
|
|a DEBBG
|b BV043106190
|
029 |
1 |
|
|a DEBSZ
|b 422097764
|
029 |
1 |
|
|a GBVCP
|b 802708560
|
035 |
|
|
|a (OCoLC)269460849
|z (OCoLC)1063868260
|
037 |
|
|
|b 00041155
|
050 |
|
4 |
|a QA76.87
|b .P69 2001eb
|
072 |
|
7 |
|a TEC
|x 004000
|2 bisacsh
|
072 |
|
7 |
|a UYQN
|2 bicssc
|
082 |
0 |
4 |
|a 629.89
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Poznyak, Alexander S.
|
245 |
1 |
0 |
|a Differential neural networks for robust nonlinear control :
|b identification, state estimation and trajectory tracking /
|c Alexander S. Poznyak, Edgar N. Sanchez, Wen Yu.
|
260 |
|
|
|a River Edge, NJ :
|b World Scientific,
|c ©2001.
|
300 |
|
|
|a 1 online resource (xxxi, 422 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This volume deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical).
|
505 |
0 |
|
|a 0.1 Abstract ; 0.2 Preface ; 0.3 Acknowledgments ; 0.4 Introduction ; 0.4.1 Guide for the Readers ; 0.5 Notations ; I Theoretical Study ; 1 Neural Networks Structures ; 1.1 Introduction ; 1.2 Biological Neural Networks ; 1.3 Neuron Model.
|
505 |
8 |
|
|a 1.4 Neural Networks Structures 1.4.1 Single-Layer Feedforward Networks ; 1.4.2 Multilayer Feedforward Neural Networks ; 1.4.3 Radial Basis Function Neural Networks ; 1.4.4 Recurrent Neural Networks ; 1.4.5 Differential Neural Networks ; 1.5 Neural Networks in Control.
|
505 |
8 |
|
|a 1.5.1 Identification 1.5.2 Control ; 1.6 Conclusions ; 1.7 References ; 2 Nonlinear System Identification: Differential Learning ; 2.1 Introduction ; 2.2 Identification Error Stability Analysis for Simplest Differential Neural Networks without Hidden Layers.
|
505 |
8 |
|
|a 2.2.1 Nonlinear System and Differential Neural Network Model 2.2.2 Exact Neural Network Matching with Known Linear Part ; 2.2.3 Non-exact Neural Networks Modelling: Bounded Unmodelled Dynamics Case.
|
505 |
8 |
|
|a 2.2.4 Estimation of Maximum Value of Identification Error for Nonlinear Systems with Bounded Unmodelled Dynamics 2.3 Multilayer Differential Neural Networks for Nonlinear System On-line Identification ; 2.3.1 Multilayer Structure of Differential Neural Networks.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Neural networks (Computer science)
|
650 |
|
0 |
|a Nonlinear control theory.
|
650 |
|
0 |
|a Robust control.
|
650 |
|
2 |
|a Neural Networks, Computer
|
650 |
|
6 |
|a Réseaux neuronaux (Informatique)
|
650 |
|
6 |
|a Commande non linéaire.
|
650 |
|
6 |
|a Commande robuste.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Automation.
|2 bisacsh
|
650 |
|
7 |
|a Neural networks (Computer science)
|2 fast
|0 (OCoLC)fst01036260
|
650 |
|
7 |
|a Nonlinear control theory.
|2 fast
|0 (OCoLC)fst01038787
|
650 |
|
7 |
|a Robust control.
|2 fast
|0 (OCoLC)fst01099109
|
700 |
1 |
|
|a Sanchez, Edgar N.
|
700 |
1 |
|
|a Yu, Wen
|c (Robotics engineer)
|
776 |
0 |
8 |
|i Print version:
|a Poznyak, Alexander S.
|t Differential neural networks for robust nonlinear control.
|d River Edge, NJ : World Scientific, ©2001
|z 9789810246242
|w (DLC) 2002275143
|w (OCoLC)50291236
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235826
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24685609
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 235826
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2907176
|
994 |
|
|
|a 92
|b IZTAP
|